亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Noise-tolerant RGB-D feature fusion network for outdoor fruit detection

RGB颜色模型 人工智能 计算机视觉 计算机科学 噪音(视频) 特征(语言学) 模式识别(心理学) 图像(数学) 哲学 语言学
作者
Qixin Sun,Xiujuan Chai,Zhikang Zeng,Guomin Zhou,Tan Sun
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:198: 107034-107034 被引量:25
标识
DOI:10.1016/j.compag.2022.107034
摘要

In the process of farm automation, fruit detection is the basis and guarantee for yield prediction, automatic picking, and other orchard operations. RGB images can only obtain the two-dimensional information of the scene, which is not sufficient to effectively distinguish fruits that are dense growth and occlusion by branches and leaves. With the development of depth sensors, using RGB-D images with more complementary information can boost the performance of fruit detection. However, due to the nature of sensors and scene configurations, the quality of outdoor depth images is poor, posing a challenge when fusing RGB-D features. Therefore, this paper proposes an end-to-end RGB-D object detection network, termed as noise-tolerant feature fusion network (NT-FFN), to utilize the outdoor multi-modal data properly and improve the detection accuracy. Specifically, the NT-FFN first uses two structurally identical feature extractors to extract single-modal (color and depth) features, which is the base of the subsequent feature fusion. Then, to avoid introducing too much depth noise and focus the perception on the important part of the features, an attention-based fusion module is designed to adaptively fuse the multi-modal features. Finally, multi-scale features from the color images and the fusion modules are used to predict object position, which not only improves the network's ability to detect multi-scale objects but also further enhances the noise immunity of the network. In addition, this paper constructs an RGB-D citrus fruit dataset, which contributes to comprehensively evaluating the proposed network. Evaluation metrics on the dataset show that the NT-FFN achieves an AP50 of 95.4% with a real-time speed, which outperforms single-modal methods, common multi-modal fusion strategies, and advanced multi-modal detection methods. The proposed NT-FFN also achieves excellent detection results in other fruit detection tasks, which verifies its generalization ability. This study provides the possibility and foundation for performing multi-modal information fusion in outdoor fruit detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pin完成签到 ,获得积分10
34秒前
李爱国应助wpj采纳,获得10
52秒前
Akim应助科研通管家采纳,获得10
56秒前
qrwyqjbsd应助科研通管家采纳,获得10
56秒前
科研通AI2S应助科研通管家采纳,获得10
56秒前
56秒前
58秒前
茶茶完成签到,获得积分10
1分钟前
1分钟前
2分钟前
AM发布了新的文献求助10
2分钟前
qrwyqjbsd应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
ling361完成签到,获得积分10
3分钟前
铭铭铭发布了新的文献求助10
3分钟前
3分钟前
3分钟前
淡定幼荷发布了新的文献求助10
3分钟前
淡定幼荷完成签到,获得积分10
4分钟前
4分钟前
benbenca发布了新的文献求助20
4分钟前
4分钟前
liudy发布了新的文献求助10
4分钟前
孔wj发布了新的文献求助10
4分钟前
5分钟前
孔wj完成签到,获得积分10
5分钟前
sisyphus发布了新的文献求助10
5分钟前
毓雅完成签到,获得积分10
6分钟前
qz完成签到,获得积分10
6分钟前
6分钟前
共享精神应助qz采纳,获得10
6分钟前
6分钟前
脑洞疼应助早睡早起采纳,获得10
6分钟前
大方剑愁发布了新的文献求助10
6分钟前
6分钟前
qrwyqjbsd应助科研通管家采纳,获得10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
大方剑愁发布了新的文献求助10
6分钟前
7分钟前
us_1999完成签到,获得积分10
7分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466835
求助须知:如何正确求助?哪些是违规求助? 3059635
关于积分的说明 9067253
捐赠科研通 2750111
什么是DOI,文献DOI怎么找? 1509008
科研通“疑难数据库(出版商)”最低求助积分说明 697124
邀请新用户注册赠送积分活动 696896