Development and Validation of an Explainable Machine Learning Model for Major Complications After Cytoreductive Surgery

医学 计算机科学 癌症 内科学 细胞减少术 卵巢癌
作者
Huiyu Deng,Zahra Eftekhari,Cameron Carlin,Jula Veerapong,Keith F. Fournier,Fabian M. Johnston,Seán Dineen,Benjamin D. Powers,Ryan J. Hendrix,Laura Lambert,Daniel E. Abbott,Kara Vande Walle,Travis E. Grotz,Sameer H. Patel,Callisia N. Clarke,Charles A. Staley,Sherif Abdel‐Misih,Jordan M. Cloyd,Byrne Lee,Yuman Fong,Mustafa Raoof
出处
期刊:JAMA network open [American Medical Association]
卷期号:5 (5): e2212930-e2212930 被引量:19
标识
DOI:10.1001/jamanetworkopen.2022.12930
摘要

Cytoreductive surgery (CRS) is one of the most complex operations in surgical oncology with significant morbidity, and improved risk prediction tools are critically needed. Machine learning models can potentially overcome the limitations of traditional multiple logistic regression (MLR) models and provide accurate risk estimates.To develop and validate an explainable machine learning model for predicting major postoperative complications in patients undergoing CRS.This prognostic study used patient data from tertiary care hospitals with expertise in CRS included in the US Hyperthermic Intraperitoneal Chemotherapy Collaborative Database between 1998 and 2018. Information from 147 variables was extracted to predict the risk of a major complication. An ensemble-based machine learning (gradient-boosting) model was optimized on 80% of the sample with subsequent validation on a 20% holdout data set. The machine learning model was compared with traditional MLR models. The artificial intelligence SHAP (Shapley additive explanations) method was used for interpretation of patient- and cohort-level risk estimates and interactions to define novel surgical risk phenotypes. Data were analyzed between November 2019 and August 2021.Cytoreductive surgery.Area under the receiver operating characteristics (AUROC); area under the precision recall curve (AUPRC).Data from a total 2372 patients were included in model development (mean age, 55 years [range, 11-95 years]; 1366 [57.6%] women). The optimized machine learning model achieved high discrimination (AUROC: mean cross-validation, 0.75 [range, 0.73-0.81]; test, 0.74) and precision (AUPRC: mean cross-validation, 0.50 [range, 0.46-0.58]; test, 0.42). Compared with the optimized machine learning model, the published MLR model performed worse (test AUROC and AUPRC: 0.54 and 0.18, respectively). Higher volume of estimated blood loss, having pelvic peritonectomy, and longer operative time were the top 3 contributors to the high likelihood of major complications. SHAP dependence plots demonstrated insightful nonlinear interactive associations between predictors and major complications. For instance, high estimated blood loss (ie, above 500 mL) was only detrimental when operative time exceeded 9 hours. Unsupervised clustering of patients based on similarity of sources of risk allowed identification of 6 distinct surgical risk phenotypes.In this prognostic study using data from patients undergoing CRS, an optimized machine learning model demonstrated a superior ability to predict individual- and cohort-level risk of major complications vs traditional methods. Using the SHAP method, 6 distinct surgical phenotypes were identified based on sources of risk of major complications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
橘橙色发布了新的文献求助10
刚刚
choiyxh发布了新的文献求助10
3秒前
3秒前
笑一笑发布了新的文献求助10
3秒前
3秒前
传奇3应助王欧尼采纳,获得10
7秒前
LLLLL发布了新的文献求助30
8秒前
dreamer完成签到,获得积分10
9秒前
隐形曼青应助CY采纳,获得10
9秒前
10秒前
10秒前
ding应助vilin采纳,获得10
12秒前
14秒前
yx_cheng应助fhhkckk3采纳,获得30
15秒前
judy891zhu完成签到,获得积分10
18秒前
18秒前
Doris完成签到 ,获得积分20
18秒前
欢呼的飞荷完成签到 ,获得积分10
21秒前
bian完成签到,获得积分10
21秒前
21秒前
舒服的微笑完成签到,获得积分10
23秒前
杨生完成签到,获得积分10
23秒前
24秒前
24秒前
xybc完成签到,获得积分10
28秒前
桃子应助喵喵采纳,获得10
29秒前
31秒前
山山发布了新的文献求助10
31秒前
深情傲柔发布了新的文献求助10
34秒前
37秒前
yx_cheng应助ll采纳,获得10
39秒前
40秒前
小二郎应助zyq采纳,获得10
41秒前
CipherSage应助深情傲柔采纳,获得10
42秒前
zzz发布了新的文献求助10
43秒前
寂寞的书竹完成签到,获得积分10
44秒前
笑一笑发布了新的文献求助10
45秒前
45秒前
46秒前
李健应助1234567采纳,获得10
48秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3999175
求助须知:如何正确求助?哪些是违规求助? 3538547
关于积分的说明 11274517
捐赠科研通 3277430
什么是DOI,文献DOI怎么找? 1807585
邀请新用户注册赠送积分活动 883948
科研通“疑难数据库(出版商)”最低求助积分说明 810080