清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Development and Validation of an Explainable Machine Learning Model for Major Complications After Cytoreductive Surgery

医学 计算机科学 癌症 内科学 细胞减少术 卵巢癌
作者
Huiyu Deng,Zahra Eftekhari,Cameron Carlin,Jula Veerapong,Keith F. Fournier,Fabian M. Johnston,Seán Dineen,Benjamin D. Powers,Ryan J. Hendrix,Laura Lambert,Daniel E. Abbott,Kara Vande Walle,Travis E. Grotz,Sameer H. Patel,Callisia N. Clarke,Charles A. Staley,Sherif Abdel‐Misih,Jordan M. Cloyd,Byrne Lee,Yuman Fong
出处
期刊:JAMA network open [American Medical Association]
卷期号:5 (5): e2212930-e2212930 被引量:39
标识
DOI:10.1001/jamanetworkopen.2022.12930
摘要

Cytoreductive surgery (CRS) is one of the most complex operations in surgical oncology with significant morbidity, and improved risk prediction tools are critically needed. Machine learning models can potentially overcome the limitations of traditional multiple logistic regression (MLR) models and provide accurate risk estimates.To develop and validate an explainable machine learning model for predicting major postoperative complications in patients undergoing CRS.This prognostic study used patient data from tertiary care hospitals with expertise in CRS included in the US Hyperthermic Intraperitoneal Chemotherapy Collaborative Database between 1998 and 2018. Information from 147 variables was extracted to predict the risk of a major complication. An ensemble-based machine learning (gradient-boosting) model was optimized on 80% of the sample with subsequent validation on a 20% holdout data set. The machine learning model was compared with traditional MLR models. The artificial intelligence SHAP (Shapley additive explanations) method was used for interpretation of patient- and cohort-level risk estimates and interactions to define novel surgical risk phenotypes. Data were analyzed between November 2019 and August 2021.Cytoreductive surgery.Area under the receiver operating characteristics (AUROC); area under the precision recall curve (AUPRC).Data from a total 2372 patients were included in model development (mean age, 55 years [range, 11-95 years]; 1366 [57.6%] women). The optimized machine learning model achieved high discrimination (AUROC: mean cross-validation, 0.75 [range, 0.73-0.81]; test, 0.74) and precision (AUPRC: mean cross-validation, 0.50 [range, 0.46-0.58]; test, 0.42). Compared with the optimized machine learning model, the published MLR model performed worse (test AUROC and AUPRC: 0.54 and 0.18, respectively). Higher volume of estimated blood loss, having pelvic peritonectomy, and longer operative time were the top 3 contributors to the high likelihood of major complications. SHAP dependence plots demonstrated insightful nonlinear interactive associations between predictors and major complications. For instance, high estimated blood loss (ie, above 500 mL) was only detrimental when operative time exceeded 9 hours. Unsupervised clustering of patients based on similarity of sources of risk allowed identification of 6 distinct surgical risk phenotypes.In this prognostic study using data from patients undergoing CRS, an optimized machine learning model demonstrated a superior ability to predict individual- and cohort-level risk of major complications vs traditional methods. Using the SHAP method, 6 distinct surgical phenotypes were identified based on sources of risk of major complications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助木木圆采纳,获得10
1秒前
常有李发布了新的文献求助10
9秒前
19秒前
科研通AI6应助常有李采纳,获得10
21秒前
星辰大海应助熊熊采纳,获得10
32秒前
科研通AI6应助科研通管家采纳,获得10
43秒前
1分钟前
牧紊完成签到 ,获得积分10
1分钟前
Nancy0818完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
Lemon_ice发布了新的文献求助10
1分钟前
熊熊发布了新的文献求助10
1分钟前
1分钟前
Lemon_ice完成签到,获得积分10
1分钟前
飞龙在天完成签到 ,获得积分10
1分钟前
msn00完成签到 ,获得积分10
2分钟前
科研通AI2S应助尹汉通采纳,获得10
2分钟前
2分钟前
量子星尘发布了新的文献求助150
2分钟前
2分钟前
火鸟发布了新的文献求助50
3分钟前
3分钟前
闹心发布了新的文献求助10
3分钟前
两个榴莲完成签到,获得积分0
3分钟前
止观发布了新的文献求助10
3分钟前
3分钟前
木木圆发布了新的文献求助10
4分钟前
852应助木木圆采纳,获得10
4分钟前
止观发布了新的文献求助10
4分钟前
4分钟前
打打应助止观采纳,获得10
5分钟前
BOB007发布了新的文献求助10
5分钟前
NI完成签到 ,获得积分10
5分钟前
火鸟完成签到,获得积分10
5分钟前
踏雪完成签到,获得积分10
5分钟前
5分钟前
星际舟完成签到,获得积分10
5分钟前
5分钟前
6分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5149103
求助须知:如何正确求助?哪些是违规求助? 4345261
关于积分的说明 13530277
捐赠科研通 4187506
什么是DOI,文献DOI怎么找? 2296338
邀请新用户注册赠送积分活动 1296674
关于科研通互助平台的介绍 1240753