已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Development and Validation of an Explainable Machine Learning Model for Major Complications After Cytoreductive Surgery

医学 计算机科学 癌症 内科学 细胞减少术 卵巢癌
作者
Huiyu Deng,Zahra Eftekhari,Cameron Carlin,Jula Veerapong,Keith F. Fournier,Fabian M. Johnston,Seán Dineen,Benjamin D. Powers,Ryan J. Hendrix,Laura Lambert,Daniel E. Abbott,Kara Vande Walle,Travis E. Grotz,Sameer H. Patel,Callisia N. Clarke,Charles A. Staley,Sherif Abdel‐Misih,Jordan M. Cloyd,Byrne Lee,Yuman Fong
出处
期刊:JAMA network open [American Medical Association]
卷期号:5 (5): e2212930-e2212930 被引量:36
标识
DOI:10.1001/jamanetworkopen.2022.12930
摘要

Cytoreductive surgery (CRS) is one of the most complex operations in surgical oncology with significant morbidity, and improved risk prediction tools are critically needed. Machine learning models can potentially overcome the limitations of traditional multiple logistic regression (MLR) models and provide accurate risk estimates.To develop and validate an explainable machine learning model for predicting major postoperative complications in patients undergoing CRS.This prognostic study used patient data from tertiary care hospitals with expertise in CRS included in the US Hyperthermic Intraperitoneal Chemotherapy Collaborative Database between 1998 and 2018. Information from 147 variables was extracted to predict the risk of a major complication. An ensemble-based machine learning (gradient-boosting) model was optimized on 80% of the sample with subsequent validation on a 20% holdout data set. The machine learning model was compared with traditional MLR models. The artificial intelligence SHAP (Shapley additive explanations) method was used for interpretation of patient- and cohort-level risk estimates and interactions to define novel surgical risk phenotypes. Data were analyzed between November 2019 and August 2021.Cytoreductive surgery.Area under the receiver operating characteristics (AUROC); area under the precision recall curve (AUPRC).Data from a total 2372 patients were included in model development (mean age, 55 years [range, 11-95 years]; 1366 [57.6%] women). The optimized machine learning model achieved high discrimination (AUROC: mean cross-validation, 0.75 [range, 0.73-0.81]; test, 0.74) and precision (AUPRC: mean cross-validation, 0.50 [range, 0.46-0.58]; test, 0.42). Compared with the optimized machine learning model, the published MLR model performed worse (test AUROC and AUPRC: 0.54 and 0.18, respectively). Higher volume of estimated blood loss, having pelvic peritonectomy, and longer operative time were the top 3 contributors to the high likelihood of major complications. SHAP dependence plots demonstrated insightful nonlinear interactive associations between predictors and major complications. For instance, high estimated blood loss (ie, above 500 mL) was only detrimental when operative time exceeded 9 hours. Unsupervised clustering of patients based on similarity of sources of risk allowed identification of 6 distinct surgical risk phenotypes.In this prognostic study using data from patients undergoing CRS, an optimized machine learning model demonstrated a superior ability to predict individual- and cohort-level risk of major complications vs traditional methods. Using the SHAP method, 6 distinct surgical phenotypes were identified based on sources of risk of major complications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
弎夜发布了新的文献求助30
1秒前
忧心的网络完成签到,获得积分20
3秒前
不想干活应助幸福大白采纳,获得10
5秒前
不想干活应助幸福大白采纳,获得10
5秒前
万能图书馆应助幸福大白采纳,获得10
5秒前
领导范儿应助coollz采纳,获得10
6秒前
ccm应助科研通管家采纳,获得10
6秒前
深情安青应助科研通管家采纳,获得10
6秒前
丘比特应助科研通管家采纳,获得10
6秒前
丘比特应助科研通管家采纳,获得10
6秒前
小蘑菇应助科研通管家采纳,获得10
6秒前
小蘑菇应助科研通管家采纳,获得10
6秒前
爆米花应助科研通管家采纳,获得10
6秒前
7秒前
汉堡包应助科研三轮车采纳,获得10
11秒前
15秒前
Eliauk完成签到 ,获得积分10
19秒前
活泼尔烟发布了新的文献求助10
21秒前
24秒前
26秒前
赘婿应助车灵寒采纳,获得10
28秒前
28秒前
崔梦楠完成签到 ,获得积分10
29秒前
HUNGJJ发布了新的文献求助10
30秒前
无花果应助大佬求帮采纳,获得10
30秒前
Rainnnn发布了新的文献求助10
32秒前
丸太子发布了新的文献求助10
33秒前
香蕉觅云应助Yolo采纳,获得10
36秒前
36秒前
dkjg完成签到 ,获得积分10
40秒前
coollz发布了新的文献求助10
41秒前
mayounaizi14发布了新的文献求助10
41秒前
小二郎应助幸福大白采纳,获得10
42秒前
44秒前
丸太子完成签到,获得积分10
44秒前
larsy完成签到 ,获得积分10
44秒前
jliu完成签到,获得积分10
45秒前
48秒前
科研通AI5应助Rainnnn采纳,获得10
48秒前
小袁冲冲冲完成签到,获得积分10
50秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4610031
求助须知:如何正确求助?哪些是违规求助? 4016179
关于积分的说明 12434575
捐赠科研通 3697585
什么是DOI,文献DOI怎么找? 2038909
邀请新用户注册赠送积分活动 1071843
科研通“疑难数据库(出版商)”最低求助积分说明 955542