Development and Validation of an Explainable Machine Learning Model for Major Complications After Cytoreductive Surgery

医学 计算机科学 癌症 内科学 细胞减少术 卵巢癌
作者
Huiyu Deng,Zahra Eftekhari,Cameron Carlin,Jula Veerapong,Keith F. Fournier,Fabian M. Johnston,Seán Dineen,Benjamin D. Powers,Ryan J. Hendrix,Laura Lambert,Daniel E. Abbott,Kara Vande Walle,Travis E. Grotz,Sameer H. Patel,Callisia N. Clarke,Charles A. Staley,Sherif Abdel‐Misih,Jordan M. Cloyd,Byrne Lee,Yuman Fong
出处
期刊:JAMA network open [American Medical Association]
卷期号:5 (5): e2212930-e2212930 被引量:39
标识
DOI:10.1001/jamanetworkopen.2022.12930
摘要

Cytoreductive surgery (CRS) is one of the most complex operations in surgical oncology with significant morbidity, and improved risk prediction tools are critically needed. Machine learning models can potentially overcome the limitations of traditional multiple logistic regression (MLR) models and provide accurate risk estimates.To develop and validate an explainable machine learning model for predicting major postoperative complications in patients undergoing CRS.This prognostic study used patient data from tertiary care hospitals with expertise in CRS included in the US Hyperthermic Intraperitoneal Chemotherapy Collaborative Database between 1998 and 2018. Information from 147 variables was extracted to predict the risk of a major complication. An ensemble-based machine learning (gradient-boosting) model was optimized on 80% of the sample with subsequent validation on a 20% holdout data set. The machine learning model was compared with traditional MLR models. The artificial intelligence SHAP (Shapley additive explanations) method was used for interpretation of patient- and cohort-level risk estimates and interactions to define novel surgical risk phenotypes. Data were analyzed between November 2019 and August 2021.Cytoreductive surgery.Area under the receiver operating characteristics (AUROC); area under the precision recall curve (AUPRC).Data from a total 2372 patients were included in model development (mean age, 55 years [range, 11-95 years]; 1366 [57.6%] women). The optimized machine learning model achieved high discrimination (AUROC: mean cross-validation, 0.75 [range, 0.73-0.81]; test, 0.74) and precision (AUPRC: mean cross-validation, 0.50 [range, 0.46-0.58]; test, 0.42). Compared with the optimized machine learning model, the published MLR model performed worse (test AUROC and AUPRC: 0.54 and 0.18, respectively). Higher volume of estimated blood loss, having pelvic peritonectomy, and longer operative time were the top 3 contributors to the high likelihood of major complications. SHAP dependence plots demonstrated insightful nonlinear interactive associations between predictors and major complications. For instance, high estimated blood loss (ie, above 500 mL) was only detrimental when operative time exceeded 9 hours. Unsupervised clustering of patients based on similarity of sources of risk allowed identification of 6 distinct surgical risk phenotypes.In this prognostic study using data from patients undergoing CRS, an optimized machine learning model demonstrated a superior ability to predict individual- and cohort-level risk of major complications vs traditional methods. Using the SHAP method, 6 distinct surgical phenotypes were identified based on sources of risk of major complications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
徐矜完成签到,获得积分10
2秒前
Ning完成签到,获得积分10
3秒前
大个应助务实一德采纳,获得10
4秒前
蓝色天空完成签到,获得积分10
4秒前
4秒前
贪玩的甜瓜应助长情从安采纳,获得10
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
奶茶麻辣烫完成签到,获得积分10
7秒前
CipherSage应助小蚂蚁采纳,获得10
8秒前
8秒前
8秒前
8秒前
德胜岩山神完成签到,获得积分10
8秒前
灵巧汉堡完成签到 ,获得积分10
9秒前
9秒前
9秒前
10秒前
科研通AI6应助F_echo采纳,获得10
11秒前
木流留马完成签到 ,获得积分10
13秒前
LXY发布了新的文献求助10
14秒前
ChenYX发布了新的文献求助10
14秒前
sunny完成签到,获得积分10
14秒前
ste发布了新的文献求助10
14秒前
15秒前
16秒前
18秒前
璃城完成签到,获得积分10
20秒前
22秒前
23秒前
阳光寒荷完成签到 ,获得积分10
25秒前
xgx984完成签到,获得积分10
26秒前
28秒前
李健应助moonpie采纳,获得10
30秒前
30秒前
顺利毕业完成签到,获得积分10
31秒前
殷一丹完成签到 ,获得积分10
32秒前
33秒前
li完成签到,获得积分10
34秒前
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
Sport, Social Media, and Digital Technology: Sociological Approaches 650
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5594094
求助须知:如何正确求助?哪些是违规求助? 4679802
关于积分的说明 14811596
捐赠科研通 4645803
什么是DOI,文献DOI怎么找? 2534749
邀请新用户注册赠送积分活动 1502769
关于科研通互助平台的介绍 1469452