亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Development and Validation of an Explainable Machine Learning Model for Major Complications After Cytoreductive Surgery

医学 计算机科学 癌症 内科学 细胞减少术 卵巢癌
作者
Huiyu Deng,Zahra Eftekhari,Cameron Carlin,Jula Veerapong,Keith F. Fournier,Fabian M. Johnston,Seán Dineen,Benjamin D. Powers,Ryan J. Hendrix,Laura Lambert,Daniel E. Abbott,Kara Vande Walle,Travis E. Grotz,Sameer H. Patel,Callisia N. Clarke,Charles A. Staley,Sherif Abdel‐Misih,Jordan M. Cloyd,Byrne Lee,Yuman Fong
出处
期刊:JAMA network open [American Medical Association]
卷期号:5 (5): e2212930-e2212930 被引量:39
标识
DOI:10.1001/jamanetworkopen.2022.12930
摘要

Cytoreductive surgery (CRS) is one of the most complex operations in surgical oncology with significant morbidity, and improved risk prediction tools are critically needed. Machine learning models can potentially overcome the limitations of traditional multiple logistic regression (MLR) models and provide accurate risk estimates.To develop and validate an explainable machine learning model for predicting major postoperative complications in patients undergoing CRS.This prognostic study used patient data from tertiary care hospitals with expertise in CRS included in the US Hyperthermic Intraperitoneal Chemotherapy Collaborative Database between 1998 and 2018. Information from 147 variables was extracted to predict the risk of a major complication. An ensemble-based machine learning (gradient-boosting) model was optimized on 80% of the sample with subsequent validation on a 20% holdout data set. The machine learning model was compared with traditional MLR models. The artificial intelligence SHAP (Shapley additive explanations) method was used for interpretation of patient- and cohort-level risk estimates and interactions to define novel surgical risk phenotypes. Data were analyzed between November 2019 and August 2021.Cytoreductive surgery.Area under the receiver operating characteristics (AUROC); area under the precision recall curve (AUPRC).Data from a total 2372 patients were included in model development (mean age, 55 years [range, 11-95 years]; 1366 [57.6%] women). The optimized machine learning model achieved high discrimination (AUROC: mean cross-validation, 0.75 [range, 0.73-0.81]; test, 0.74) and precision (AUPRC: mean cross-validation, 0.50 [range, 0.46-0.58]; test, 0.42). Compared with the optimized machine learning model, the published MLR model performed worse (test AUROC and AUPRC: 0.54 and 0.18, respectively). Higher volume of estimated blood loss, having pelvic peritonectomy, and longer operative time were the top 3 contributors to the high likelihood of major complications. SHAP dependence plots demonstrated insightful nonlinear interactive associations between predictors and major complications. For instance, high estimated blood loss (ie, above 500 mL) was only detrimental when operative time exceeded 9 hours. Unsupervised clustering of patients based on similarity of sources of risk allowed identification of 6 distinct surgical risk phenotypes.In this prognostic study using data from patients undergoing CRS, an optimized machine learning model demonstrated a superior ability to predict individual- and cohort-level risk of major complications vs traditional methods. Using the SHAP method, 6 distinct surgical phenotypes were identified based on sources of risk of major complications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助失眠奥特曼采纳,获得10
28秒前
赘婿应助我是熊大采纳,获得30
39秒前
1分钟前
明柳发布了新的文献求助10
1分钟前
QYQ完成签到 ,获得积分10
2分钟前
汪汪淬冰冰完成签到,获得积分10
2分钟前
明柳完成签到,获得积分20
2分钟前
香蕉觅云应助明柳采纳,获得10
3分钟前
3分钟前
我是熊大发布了新的文献求助30
3分钟前
3分钟前
唐泽雪穗完成签到,获得积分10
3分钟前
星辰大海应助荼蘼采纳,获得10
3分钟前
唐泽雪穗发布了新的文献求助10
3分钟前
3分钟前
dong发布了新的文献求助10
3分钟前
隐形曼青应助Wednesday Chong采纳,获得10
4分钟前
飞天大南瓜完成签到,获得积分10
4分钟前
热热完成签到 ,获得积分10
4分钟前
科研通AI5应助斯文墨镜采纳,获得10
4分钟前
4分钟前
斯文墨镜发布了新的文献求助10
4分钟前
情怀应助合适的乐儿采纳,获得10
5分钟前
上善若水完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
5分钟前
kiki发布了新的文献求助10
5分钟前
昏睡的世倌完成签到,获得积分10
5分钟前
kiki完成签到,获得积分10
5分钟前
5分钟前
zhouti497541171完成签到,获得积分10
5分钟前
冬雪丶消融应助科研通管家采纳,获得200
6分钟前
土豆炖大锅完成签到,获得积分10
6分钟前
量子星尘发布了新的文献求助50
6分钟前
科目三应助我是熊大采纳,获得10
6分钟前
合不着完成签到 ,获得积分10
6分钟前
叶子完成签到,获得积分10
7分钟前
8分钟前
我是熊大发布了新的文献求助10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4984013
求助须知:如何正确求助?哪些是违规求助? 4235053
关于积分的说明 13189647
捐赠科研通 4027561
什么是DOI,文献DOI怎么找? 2203265
邀请新用户注册赠送积分活动 1215461
关于科研通互助平台的介绍 1132729