Metric Invariance in Exploratory Graph Analysis via Permutation Testing

测量不变性 可比性 公制(单位) 统计 拟合优度 心理测量学 验证性因素分析 探索性因素分析 样品(材料) 样本量测定 计量经济学 空模式 数学 计算机科学 结构方程建模 工程类 运营管理 化学 色谱法 组合数学
作者
Laura Jamison,Hudson Golino,Alexander P. Christensen
标识
DOI:10.31234/osf.io/j4rx9
摘要

Establishing measurement invariance (MI) is vital to ensure applicability and comparability across groups (or time points) in psychological measurement. If MI is violated, differences between groups could be due to measurement rather than true differences between groups. Factor analytic methods are commonly used to test MI; however, many existing methods have reduced power to detect MI due to model misspecification (e.g., noninvariant referent indicators, reliance on data-driven methods). Literature reviews on MI studies have reported inaccurate or inadequately described models with modeling errors primarily predicted by software choice. Another reduction in power may be due to goodness of fit measures when group sample sizes vary. Network psychometrics methods to test MI are limited and primarily focus on partial correlation differences. In the present research, we propose a novel network psychometrics method to test MI within the Exploratory Graph Analysis framework. This method leverages so-called network loadings by calculating their differences between groups and uses permutation testing to stasitically compare these differences to the permutated null distribution. A simulation study was conducted using data structures common in psychological research (factor models) that included unequal group sample sizes. The proposed network psychometrics method demonstrated comparable ability to factor analytic methods in detecting MI, with some improvement in certain conditions such as lower noninvariance effect sizes in smaller or unequal sample sizes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
2秒前
阿里巴巴大盗完成签到,获得积分10
3秒前
zying发布了新的文献求助30
3秒前
传奇3应助muzi采纳,获得10
4秒前
4秒前
4秒前
谢琉圭发布了新的文献求助10
6秒前
wu发布了新的文献求助10
7秒前
打滚完成签到,获得积分10
8秒前
LJJ发布了新的文献求助10
8秒前
睡觉了完成签到 ,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
乖猫要努力应助精明寻梅采纳,获得10
11秒前
AI完成签到,获得积分10
14秒前
xiaosu发布了新的文献求助30
15秒前
15秒前
谢琉圭完成签到,获得积分10
17秒前
领导范儿应助稳重的若雁采纳,获得10
20秒前
20秒前
21秒前
wu完成签到,获得积分20
21秒前
momo发布了新的文献求助10
22秒前
23秒前
田様应助123采纳,获得10
23秒前
27秒前
zying完成签到,获得积分10
30秒前
31秒前
双楠应助wangjue采纳,获得10
31秒前
36秒前
雪白尔岚发布了新的文献求助10
40秒前
40秒前
40秒前
慕青应助momo采纳,获得10
41秒前
从容冰夏完成签到,获得积分10
43秒前
43秒前
桐桐应助Candy采纳,获得10
44秒前
YR完成签到,获得积分10
46秒前
欧阳月空发布了新的文献求助10
46秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989334
求助须知:如何正确求助?哪些是违规求助? 3531428
关于积分的说明 11253936
捐赠科研通 3270119
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809173