Metric Invariance in Exploratory Graph Analysis via Permutation Testing

测量不变性 可比性 公制(单位) 统计 拟合优度 心理测量学 验证性因素分析 探索性因素分析 样品(材料) 样本量测定 计量经济学 空模式 数学 计算机科学 结构方程建模 工程类 运营管理 化学 色谱法 组合数学
作者
Laura Jamison,Hudson Golino,Alexander P. Christensen
标识
DOI:10.31234/osf.io/j4rx9
摘要

Establishing measurement invariance (MI) is vital to ensure applicability and comparability across groups (or time points) in psychological measurement. If MI is violated, differences between groups could be due to measurement rather than true differences between groups. Factor analytic methods are commonly used to test MI; however, many existing methods have reduced power to detect MI due to model misspecification (e.g., noninvariant referent indicators, reliance on data-driven methods). Literature reviews on MI studies have reported inaccurate or inadequately described models with modeling errors primarily predicted by software choice. Another reduction in power may be due to goodness of fit measures when group sample sizes vary. Network psychometrics methods to test MI are limited and primarily focus on partial correlation differences. In the present research, we propose a novel network psychometrics method to test MI within the Exploratory Graph Analysis framework. This method leverages so-called network loadings by calculating their differences between groups and uses permutation testing to stasitically compare these differences to the permutated null distribution. A simulation study was conducted using data structures common in psychological research (factor models) that included unequal group sample sizes. The proposed network psychometrics method demonstrated comparable ability to factor analytic methods in detecting MI, with some improvement in certain conditions such as lower noninvariance effect sizes in smaller or unequal sample sizes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zachary发布了新的文献求助10
刚刚
HBin完成签到,获得积分10
刚刚
1秒前
埋头搞科研关注了科研通微信公众号
1秒前
1秒前
1秒前
青山入我怀关注了科研通微信公众号
2秒前
可可萝oxo发布了新的文献求助10
2秒前
2秒前
夏夏发布了新的文献求助10
2秒前
2秒前
amber完成签到,获得积分10
3秒前
Allen完成签到,获得积分10
3秒前
李健应助chenfprich采纳,获得10
3秒前
瑞某人完成签到,获得积分10
3秒前
李爱国应助琦琦采纳,获得10
3秒前
4秒前
4秒前
斯文败类应助科研通管家采纳,获得10
4秒前
我是鸡汤发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
大模型应助科研通管家采纳,获得10
5秒前
烟花应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
立刻有完成签到 ,获得积分10
5秒前
善学以致用应助kimcandy采纳,获得10
5秒前
所所应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
sutu应助科研通管家采纳,获得10
5秒前
Lucas应助科研通管家采纳,获得10
5秒前
大大小小发布了新的文献求助10
5秒前
乐观期待完成签到,获得积分10
5秒前
ding应助科研通管家采纳,获得10
6秒前
完美世界应助科研通管家采纳,获得10
6秒前
我是老大应助le采纳,获得10
6秒前
NexusExplorer应助科研通管家采纳,获得10
6秒前
lmx完成签到,获得积分10
6秒前
JamesPei应助科研通管家采纳,获得10
6秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Time Matters: On Theory and Method 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3559395
求助须知:如何正确求助?哪些是违规求助? 3134035
关于积分的说明 9405099
捐赠科研通 2834084
什么是DOI,文献DOI怎么找? 1557841
邀请新用户注册赠送积分活动 727741
科研通“疑难数据库(出版商)”最低求助积分说明 716399