A novel reed‐leaves like aluminum‐doped manganese oxide presetting sodium‐ion constructed by coprecipitation method for high electrochemical performance sodium‐ion battery

共沉淀 电化学 材料科学 无机化学 极化(电化学) 氧化物 阴极 化学 电极 冶金 物理化学
作者
Kedi Cai,Xueqin Jing,Yuting Zhang,Lan Li,Xiaoshi Lang
出处
期刊:International Journal of Energy Research [Wiley]
卷期号:46 (10): 14570-14580 被引量:38
标识
DOI:10.1002/er.8090
摘要

International Journal of Energy ResearchVolume 46, Issue 10 p. 14570-14580 TECHNICAL NOTE A novel reed-leaves like aluminum-doped manganese oxide presetting sodium-ion constructed by coprecipitation method for high electrochemical performance sodium-ion battery Kedi Cai, Kedi Cai orcid.org/0000-0003-1309-1928 College of Chemistry and Materials Engineering, Bohai University, Jinzhou, China Liaoning Engineering Technology Research Center of Supercapacitor, Bohai University, Jinzhou, ChinaSearch for more papers by this authorXueqin Jing, Xueqin Jing College of Chemistry and Materials Engineering, Bohai University, Jinzhou, ChinaSearch for more papers by this authorYuting Zhang, Yuting Zhang College of Chemistry and Materials Engineering, Bohai University, Jinzhou, ChinaSearch for more papers by this authorLan Li, Lan Li Center for Experiment, Bohai University, Jinzhou, ChinaSearch for more papers by this authorXiaoshi Lang, Corresponding Author Xiaoshi Lang [email protected] orcid.org/0000-0001-5780-1261 College of Chemistry and Materials Engineering, Bohai University, Jinzhou, China Liaoning Engineering Technology Research Center of Supercapacitor, Bohai University, Jinzhou, China Correspondence Xiaoshi Lang, College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China. Email: [email protected]Search for more papers by this author Kedi Cai, Kedi Cai orcid.org/0000-0003-1309-1928 College of Chemistry and Materials Engineering, Bohai University, Jinzhou, China Liaoning Engineering Technology Research Center of Supercapacitor, Bohai University, Jinzhou, ChinaSearch for more papers by this authorXueqin Jing, Xueqin Jing College of Chemistry and Materials Engineering, Bohai University, Jinzhou, ChinaSearch for more papers by this authorYuting Zhang, Yuting Zhang College of Chemistry and Materials Engineering, Bohai University, Jinzhou, ChinaSearch for more papers by this authorLan Li, Lan Li Center for Experiment, Bohai University, Jinzhou, ChinaSearch for more papers by this authorXiaoshi Lang, Corresponding Author Xiaoshi Lang [email protected] orcid.org/0000-0001-5780-1261 College of Chemistry and Materials Engineering, Bohai University, Jinzhou, China Liaoning Engineering Technology Research Center of Supercapacitor, Bohai University, Jinzhou, China Correspondence Xiaoshi Lang, College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China. Email: [email protected]Search for more papers by this author First published: 14 May 2022 https://doi.org/10.1002/er.8090Citations: 2 Funding information: Science and Technology General Project of Liaoning Province Education Department, Grant/Award Numbers: LQ2020009, LZ2020002; Support Program of Distinguished Professor of Liaoning Province, Grant/Award Number: 071717002; Distinguished Professor of Liaoning Province; National Natural Science Foundation of China, Grant/Award Number: 22075030 Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Summary In this paper, Al-doped manganese oxide with presetting sodium-ion (NaxMnyAlzO2) is synthesized by a facile coprecipitation method and combines with Na3V2(PO4)3 cathode active materials for sodium-ion battery in order to optimize the electrochemical performances. During the coprecipitation, a stable NaxMnyAlzO2 polynary metal oxide with Mn and Al molar ratio to 3:1 shows a special micromorphology similar to that of reed leaves, which makes it have a more ideal electrochemical specific surface area and ample mass transfer channels for rapid sodium-ion insertion and desorption. Electrochemical test indicates that reed-leaves like NaxMnyAlzO2 polynary metal oxides as active material for sodium-ion capacitor exhibit a very excellent reversibility and low electrochemical (Rct = 434 Ω) and concentration polarization (DNa+ = 2.2728 × 10−11 cm2 s−1). Specific discharge capacity can achieve to 73.76 F g−1 at 100 mA g−1 current density corresponding to 368.8 m2 g−1 electrochemical specific surface area. After 200 cycles, the capacity retention rate can be maintained at 81.81%. In addition, reed-leaves like NaxMnyAlzO2 polynary metal oxide playing a good depolarization role combined with Na3V2(PO4)3 active materials in the mass ratio to 7:3 can bring about the most excellent electrochemical performances. CONFLICT OF INTEREST The authors declare no conflict of interest. Open Research DATA AVAILABILITY STATEMENT The data that support the findings of this study are available from the corresponding author upon reasonable request. REFERENCES 1Fedotov SS, Luchinin ND, Aksyonov DA, et al. Titanium-based potassium-ion battery positive electrode with extraordinarily high redox potential. Nat Commun. 2020; 11: 1484. 2Cen Z, Kubiak P. Lithium-ion battery SOC/SOH adaptive estimation via simplified single particle model. Int J Energy Res. 2020; 44(15): 12444-12459. 3Cai K, Li YY, Lang X, Li L, Zhang Q. Synergistic effect of sulfur on electrochemical performances of carbon-coated vanadium pentoxide cathode materials with polyvinyl alcohol as carbon source for lithium-ion batteries. Int J Energy Res. 2019; 43: 7664-7671. 4Lang X, Wang X, Li YY, Cai K, Li L, Zhang Q. Electrochemical performances of KOH activated carbon coated vanadium oxide with sucrose as carbon source for sulfur immobilizers of lithium-sulfur batteries. Sustain Energy Technol Assess. 2021; 43:100947. 5Wang B, Xie Y, Liu T, et al. LiFePO4 quantum-dots composite synthesized by a general microreactor strategy for ultra-high-rate lithium ion batteries. Nano Energy. 2017; 42: 363-372. 6Xu H, Shen M. The control of lithium-ion batteries and supercapacitors in hybrid energy storage systems for electric vehicles: a review. Int J Energy Res. 2021; 45(15): 20524-20544. 7Lang X, Wang T, Wang Z, Li L, Yao C, Cai K. Reasonable design of a V2O5−x/TiO2 active interface structure with high polysulfide adsorption energy for advanced lithium-sulfur batteries. Electrochim Acta. 2022; 403:139723. 8Chaudhary S, Kumar ABVK, Sharma ND, Gupta M. Cauliflower-shaped ternary nanocomposites with enhanced power and energy density for supercapacitors. Int J Energy Res. 2019; 43(8): 3446-3460. 9Jin F, Wang B, Wang J, et al. Boosting electrochemical kinetics of S cathodes for room temperature Na/S batteries. Matter. 2021; 4(6): 1768-1800. 10Li J, Wang J, He X, et al. P2-Type Na0.67Mn0.8Cu0.1Mg0.1O2 as a new cathode material for sodium-ion batteries: insights of the synergetic effects of multi-metal substitution and electrolyte optimization. J Power Sources. 2019; 416: 184-192. 11Zeng T, Feng D, Peng Q, Liu Q, Xi G, Chen G. Nano-GeTe embedded in a three-dimensional carbon sponge for flexible Li-ion and Na-ion battery anodes. ACS Appl Mater Interfaces. 2021; 13(13): 15178-15189. 12Li Q, Zhang YN, Feng S, et al. N,S self-doped porous carbon with enlarged interlayer distance as anode for high performance sodium ion batteries. Int J Energy Res. 2021; 45(5): 7082-7092. 13Bray JM, Doswell CL, Pavlovskaya GE, et al. Operando visualization of battery chemistry in a sodium-ion battery by 23Na magnetic resonance imaging. Nat Commun. 2020; 11: 2083. 14Zhang J, Wei H, Cao Y, Peng C, Zhang B. Hierarchical LiMnPO4.Li3V2(PO4)3/C/rGo nanocomposites as superior-rate and long-life cathodes for lithium ion batteries. J Alloys Compd. 2018; 769: 332-339. 15Rui X, Yan Q, Skyllas-kazacos M, Lim TM. Li3V2(PO4)3 cathode materials for lithium-ion batteries: a review. J Power Sources. 2014; 258: 19-38. 16Zhu L, Sun Q, Xie L, Cao X. Na3V2(PO4)3@NC composite derived from polyaniline as cathode material for high-rate and ultralong-life sodium-ion batteries. Int J Energy Res. 2020; 44(6): 4586-4594. 17Li X, Huang Y, Wang J, et al. High valence Mo-doped Na3V2(PO4)3/C as a high rate and stable cycle life cathode for sodium battery. J Mater Chem A. 2018; 6(4): 1390-1396. 18Liu X, Feng G, Wang E, et al. Insight into preparation of Fe-doped Na3V2(PO4)3@C from aspects of particle morphology design, crystal structure modulation, and carbon graphitization regulation. ACS Appl Mater Interfaces. 2019; 11(13): 12421-12430. 19Ni Q, Bai Y, Li Y, et al. 3D electronic channels wrapped large-sized Na3V2(PO4)3 as flexible electrode for sodium-ion batteries. Small. 2018; 14: 1702864. 20Thangarasu S, Palanisamy G, Roh SH, Jung HY. Nanoconfinement and interfacial effect of Pb nanoparticles into nanoporous carbon as a longer-lifespan negative electrode material for hybrid lead-carbon battery. ACS Sustain Chem Eng. 2020; 8(23): 8868-8879. 21Lang X, Zhao Y, Cai K, Li L, Zhang Q, Wu H. Preparation of four basic lead sulfate nano-rods additives and effect on the electrochemical performance of lead-acid battery. J Energy Storage. 2017; 13: 137-142. 22Lin Z, Lin N, Lin H, Zhang W. Significance of PbO deposition ratio in activated carbon-based lead-carbon composites for lead-carbon battery under high-rate partial-state-of-charge operation. Electrochim Acta. 2020; 338:135868. 23Li P, Luo S, Wang J, et al. Preparation and electrochemical properties of Al-F co-doped spinel LiMn2O4 single-crystal material for lithium-ion battery. Int J Energy Res. 2021; 45(15): 21158-21169. 24Luo H, Wang B, Liu T, et al. Hierarchical design of hollow co-Ni LDH nanocages strung by MnO2 nanowire with enhanced pseudocapacitive properties. Energy Storage Mater. 2019; 19: 370-378. 25Didwal PN, Verma R, Min CW, Park CJ. Synthesis of 3-dimensional interconnected porous Na3V2(PO4)3@C composite as a high-performance dual electrode for Na-ion batteries. J Power Sources. 2019; 413: 1-10. 26Zhang X, Rui X, Chen D, et al. Na3V2(PO4)3: an advanced cathode for sodium-ion batteries. Nanoscale. 2019; 11: 2556-2576. Citing Literature Volume46, Issue10August 2022Pages 14570-14580 ReferencesRelatedInformation
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
周末万岁完成签到,获得积分10
刚刚
infinite完成签到,获得积分10
3秒前
打打应助小巧的怜晴采纳,获得10
3秒前
4秒前
大观天下发布了新的文献求助10
7秒前
勤恳的红酒完成签到,获得积分10
7秒前
11秒前
发疯的游子完成签到 ,获得积分10
13秒前
雯雯完成签到,获得积分10
15秒前
kqkqk完成签到 ,获得积分10
15秒前
Sea完成签到,获得积分10
17秒前
Poker完成签到 ,获得积分10
17秒前
彭于彦祖完成签到,获得积分0
18秒前
漂亮天真完成签到,获得积分10
19秒前
野山完成签到 ,获得积分10
19秒前
研友_VZGzan完成签到,获得积分10
20秒前
纸飞机完成签到,获得积分10
21秒前
克偃统统完成签到,获得积分10
21秒前
高兴小熊猫完成签到,获得积分10
26秒前
yeti完成签到,获得积分10
27秒前
YJH完成签到,获得积分10
28秒前
HonestLiang完成签到,获得积分10
29秒前
爱大美完成签到,获得积分10
34秒前
852应助纸飞机采纳,获得10
35秒前
ZZ完成签到,获得积分10
36秒前
争气完成签到 ,获得积分10
37秒前
wp4455777完成签到,获得积分10
39秒前
空空糯米团完成签到 ,获得积分10
39秒前
sln完成签到,获得积分10
42秒前
spp完成签到 ,获得积分10
43秒前
44秒前
游大达完成签到,获得积分10
46秒前
topsun完成签到,获得积分10
46秒前
房山芙完成签到,获得积分10
46秒前
hyx完成签到,获得积分10
48秒前
凡事发生必有利于我完成签到,获得积分10
49秒前
大方思柔完成签到 ,获得积分10
49秒前
49秒前
柠檬汽水完成签到,获得积分10
49秒前
无奈的从梦完成签到 ,获得积分10
51秒前
高分求助中
Evolution 10000
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158672
求助须知:如何正确求助?哪些是违规求助? 2809835
关于积分的说明 7883903
捐赠科研通 2468542
什么是DOI,文献DOI怎么找? 1314355
科研通“疑难数据库(出版商)”最低求助积分说明 630601
版权声明 602012