A cascaded combination method for defect detection of metal gear end-face

人工智能 特征(语言学) 模式识别(心理学) 面子(社会学概念) 计算机科学 特征提取 图像(数学) 比例(比率) GSM演进的增强数据速率 计算机视觉 社会科学 语言学 量子力学 物理 哲学 社会学
作者
Yingtao Su,Yan Ping,Runzhong Yi,Jian Chen,Jinghua Hu,Chao Wen
出处
期刊:Journal of Manufacturing Systems [Elsevier]
卷期号:63: 439-453 被引量:27
标识
DOI:10.1016/j.jmsy.2022.05.001
摘要

Defect detection plays an important role in implementing zero-defect manufacturing (ZDM) and improving the sustainability of manufacturing systems. The remarkable diversity of gear types, the inhomogeneity of end-face structure, as well as the small size and multi-scale of defects, are the common problems confronted during the metal gear end-face defect detection, which leads to poor performance of existing detection methods in terms of detection rate and accuracy. To address the problems above, this study proposes a cascaded combination method SR-ResNetYOLO to automatically detect the defects by region extraction and multi-scale fusion of sampled features under 16X. To obtain more effective features, this study proposes the visual-saliency-based method to extract the machined area image, eliminating the interference between the invalid features of non-machined areas and edge burrs and reducing thereby the image complexity. Subsequently, establish a 16X down-sampled feature extraction backbone network (ResNet-21), to efficiently obtain the high-resolution features of the defects by using the machined area images as input. With the multi-scale fusion module, the min-scale feature map, output by the ResNet-21, fuses at the medium- and large-scales. Finally, the three-fused-scale feature maps are classified and located by the location and classification module. The proposed method achieves satisfactory performance in terms of the mAP and recall rate, which are respectively 96.66% and 97.07%, and the average computation time of the detection for per image is 0.12 s, which can effectively detect small size and multiple scale defects of metal gear end-face.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不配.应助zhang08采纳,获得10
1秒前
1秒前
1秒前
今天摸鱼了嘛完成签到,获得积分10
2秒前
Moliria完成签到,获得积分10
2秒前
雨雨发布了新的文献求助10
2秒前
zhuzhuxia完成签到,获得积分10
3秒前
6秒前
6秒前
ChouNen发布了新的文献求助10
6秒前
6秒前
ypeng完成签到,获得积分10
7秒前
8秒前
b1124019完成签到,获得积分10
9秒前
所所应助112我的采纳,获得10
9秒前
xie老板发布了新的文献求助10
11秒前
12秒前
哈精完成签到,获得积分10
13秒前
14秒前
泥嚎完成签到,获得积分20
16秒前
16秒前
16秒前
Frank应助123采纳,获得10
17秒前
18秒前
19秒前
小鱼完成签到 ,获得积分10
19秒前
李健的小迷弟应助ZeKaWa采纳,获得10
19秒前
19秒前
黄玥完成签到,获得积分10
20秒前
xie老板完成签到,获得积分20
20秒前
龙俊秋完成签到,获得积分10
20秒前
112我的发布了新的文献求助10
22秒前
啊啊啊啊哇哇完成签到,获得积分10
22秒前
康复小白完成签到 ,获得积分10
22秒前
樱_花qxy发布了新的文献求助10
22秒前
无心的沉鱼完成签到,获得积分10
22秒前
今后应助xie老板采纳,获得10
23秒前
搜集达人应助Lynn采纳,获得10
23秒前
周冯雪完成签到 ,获得积分10
24秒前
garmenchan完成签到,获得积分10
24秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Security Awareness: Applying Practical Cybersecurity in Your World 6th Edition 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3240144
求助须知:如何正确求助?哪些是违规求助? 2885167
关于积分的说明 8237211
捐赠科研通 2553486
什么是DOI,文献DOI怎么找? 1381648
科研通“疑难数据库(出版商)”最低求助积分说明 649317
邀请新用户注册赠送积分活动 624996