De Novo Protein Fold Design Through Sequence-Independent Fragment Assembly Simulations

蛋白质设计 蛋白质数据库 折叠(高阶函数) 序列空间 蛋白质二级结构 复制品 蛋白质结构 蛋白质工程 蛋白质折叠 序列(生物学) 蛋白质结构预测 力场(虚构) 计算生物学 蒙特卡罗方法 计算机科学 生物 遗传学 数学 生物化学 艺术 统计 人工智能 纯数学 巴拿赫空间 视觉艺术 程序设计语言
作者
Robin Pearce,Xiaoqiang Huang,Gilbert S. Omenn,Yang Zhang
标识
DOI:10.1101/2022.05.16.492148
摘要

Abstract De novo protein design generally consists of two steps, including structure and sequence design. However, many protein design studies have focused on sequence design with scaffolds adapted from native structures in the PDB, which renders novel areas of protein structure and function space unexplored. Here we developed FoldDesign to create novel protein folds from specific secondary structure (SS) assignments through sequence-independent replica-exchange Monte Carlo (REMC) simulations. The method was tested on 354 non-redundant topologies, where FoldDesign consistently created stable structural folds, while recapitulating on average 87.7% of the SS elements. Meanwhile, the FoldDesign scaffolds had well-formed structures with buried residues and solvent exposed areas that closely matched their native counterparts. Despite the high fidelity to the input SS restraints and local structural characteristics of native proteins, a large portion of the designed scaffolds possessed global folds that were completely different from natural proteins in the PDB, highlighting the ability of FoldDesign to explore novel areas of protein fold space. Detailed data analyses demonstrated that the major contributions to the successful fold design lay in the optimal energy force field, which contains a balanced set of fragment and secondary structure packing terms, and the REMC simulations, which utilize multiple auxiliary movements to efficiently search the conformational space. These results demonstrate FoldDesign’s strong potential to explore both structural and functional space through computational design simulations that natural proteins have not reached through evolution. Significance Natural proteins were generated following billions of years of evolution and therefore possess limited structural folds and biological functions. There is considerable interest in de novo protein design to generate artificial proteins with novel structures and functions beyond those created by nature. However, the success rate of computational de novo protein design remains low, where extensive user-intervention and large-scale experimental optimization are typically required to achieve successful designs. To address this issue, we developed a new automated open-source program, FoldDesign, for de novo protein fold design which shows improved performance in creating high fidelity stable folds compared to other state-of-the-art methods. The success of FoldDesign should enable the creation of desired protein structures with promising clinical and industrial potential.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hao完成签到,获得积分10
1秒前
闵夏完成签到,获得积分10
1秒前
勤劳寒烟完成签到,获得积分10
1秒前
婧婧婧完成签到,获得积分20
1秒前
学无涯完成签到,获得积分10
1秒前
2秒前
汉堡包应助LFZ采纳,获得10
2秒前
聪慧从霜发布了新的文献求助20
3秒前
米亚宽发布了新的文献求助20
3秒前
3秒前
imaginarydiva完成签到,获得积分10
3秒前
sophia完成签到 ,获得积分10
3秒前
1234567890完成签到 ,获得积分10
4秒前
5秒前
海绵宝宝发布了新的文献求助10
5秒前
zyh完成签到,获得积分10
5秒前
5秒前
wuran发布了新的文献求助30
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
6秒前
Yuan88发布了新的文献求助10
6秒前
6秒前
科研通AI6应助昏睡的妙梦采纳,获得10
7秒前
Yang完成签到,获得积分10
7秒前
7秒前
7秒前
妙妙发布了新的文献求助10
7秒前
zhaohepeng发布了新的文献求助10
8秒前
8秒前
Sun完成签到,获得积分10
8秒前
8秒前
小豆豆完成签到,获得积分10
8秒前
善良的导师完成签到,获得积分20
9秒前
9秒前
9秒前
jine完成签到,获得积分10
9秒前
小小怪大士完成签到,获得积分10
10秒前
ww发布了新的文献求助10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629618
求助须知:如何正确求助?哪些是违规求助? 4720333
关于积分的说明 14970297
捐赠科研通 4787673
什么是DOI,文献DOI怎么找? 2556435
邀请新用户注册赠送积分活动 1517561
关于科研通互助平台的介绍 1478251