De Novo Protein Fold Design Through Sequence-Independent Fragment Assembly Simulations

蛋白质设计 蛋白质数据库 折叠(高阶函数) 序列空间 蛋白质二级结构 复制品 蛋白质结构 蛋白质工程 蛋白质折叠 序列(生物学) 蛋白质结构预测 力场(虚构) 计算生物学 蒙特卡罗方法 计算机科学 生物 遗传学 数学 生物化学 艺术 统计 人工智能 纯数学 巴拿赫空间 视觉艺术 程序设计语言
作者
Robin Pearce,Xiaoqiang Huang,Gilbert S. Omenn,Yang Zhang
标识
DOI:10.1101/2022.05.16.492148
摘要

Abstract De novo protein design generally consists of two steps, including structure and sequence design. However, many protein design studies have focused on sequence design with scaffolds adapted from native structures in the PDB, which renders novel areas of protein structure and function space unexplored. Here we developed FoldDesign to create novel protein folds from specific secondary structure (SS) assignments through sequence-independent replica-exchange Monte Carlo (REMC) simulations. The method was tested on 354 non-redundant topologies, where FoldDesign consistently created stable structural folds, while recapitulating on average 87.7% of the SS elements. Meanwhile, the FoldDesign scaffolds had well-formed structures with buried residues and solvent exposed areas that closely matched their native counterparts. Despite the high fidelity to the input SS restraints and local structural characteristics of native proteins, a large portion of the designed scaffolds possessed global folds that were completely different from natural proteins in the PDB, highlighting the ability of FoldDesign to explore novel areas of protein fold space. Detailed data analyses demonstrated that the major contributions to the successful fold design lay in the optimal energy force field, which contains a balanced set of fragment and secondary structure packing terms, and the REMC simulations, which utilize multiple auxiliary movements to efficiently search the conformational space. These results demonstrate FoldDesign’s strong potential to explore both structural and functional space through computational design simulations that natural proteins have not reached through evolution. Significance Natural proteins were generated following billions of years of evolution and therefore possess limited structural folds and biological functions. There is considerable interest in de novo protein design to generate artificial proteins with novel structures and functions beyond those created by nature. However, the success rate of computational de novo protein design remains low, where extensive user-intervention and large-scale experimental optimization are typically required to achieve successful designs. To address this issue, we developed a new automated open-source program, FoldDesign, for de novo protein fold design which shows improved performance in creating high fidelity stable folds compared to other state-of-the-art methods. The success of FoldDesign should enable the creation of desired protein structures with promising clinical and industrial potential.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zw发布了新的文献求助10
刚刚
流星止水完成签到 ,获得积分20
5秒前
老演员发布了新的文献求助10
5秒前
七盘西完成签到,获得积分10
6秒前
华仔应助zz采纳,获得10
7秒前
碎尘完成签到,获得积分10
7秒前
zw完成签到,获得积分10
8秒前
木笔朱瑾完成签到 ,获得积分10
8秒前
9秒前
10秒前
飘零的歌手完成签到,获得积分10
10秒前
傻呆呆发布了新的文献求助10
10秒前
隐形曼青应助踏实乌冬面采纳,获得10
11秒前
11秒前
会撒娇的含巧完成签到,获得积分10
12秒前
13秒前
15秒前
木木酱发布了新的文献求助10
15秒前
川后静波发布了新的文献求助10
16秒前
16秒前
17秒前
17秒前
Daphne发布了新的文献求助30
18秒前
Freya发布了新的文献求助10
20秒前
西伯侯发布了新的文献求助10
20秒前
里透发布了新的文献求助10
22秒前
川后静波完成签到,获得积分10
22秒前
流星止水发布了新的文献求助10
23秒前
小夏完成签到 ,获得积分0
26秒前
星辰大海应助000000采纳,获得10
27秒前
31秒前
32秒前
32秒前
朴实的秋发布了新的文献求助10
32秒前
李神奇应助科研通管家采纳,获得20
33秒前
SciGPT应助科研通管家采纳,获得20
33秒前
tuanheqi应助萧水白采纳,获得100
33秒前
SciGPT应助科研通管家采纳,获得30
33秒前
33秒前
wanci应助科研通管家采纳,获得10
34秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3329264
求助须知:如何正确求助?哪些是违规求助? 2959023
关于积分的说明 8593749
捐赠科研通 2637457
什么是DOI,文献DOI怎么找? 1443521
科研通“疑难数据库(出版商)”最低求助积分说明 668773
邀请新用户注册赠送积分活动 656144