De Novo Protein Fold Design Through Sequence-Independent Fragment Assembly Simulations

蛋白质设计 蛋白质数据库 折叠(高阶函数) 序列空间 蛋白质二级结构 复制品 蛋白质结构 蛋白质工程 蛋白质折叠 序列(生物学) 蛋白质结构预测 力场(虚构) 计算生物学 蒙特卡罗方法 计算机科学 生物 遗传学 数学 生物化学 统计 巴拿赫空间 艺术 视觉艺术 人工智能 程序设计语言 纯数学
作者
Robin Pearce,Xiaoqiang Huang,Gilbert S. Omenn,Yang Zhang
标识
DOI:10.1101/2022.05.16.492148
摘要

Abstract De novo protein design generally consists of two steps, including structure and sequence design. However, many protein design studies have focused on sequence design with scaffolds adapted from native structures in the PDB, which renders novel areas of protein structure and function space unexplored. Here we developed FoldDesign to create novel protein folds from specific secondary structure (SS) assignments through sequence-independent replica-exchange Monte Carlo (REMC) simulations. The method was tested on 354 non-redundant topologies, where FoldDesign consistently created stable structural folds, while recapitulating on average 87.7% of the SS elements. Meanwhile, the FoldDesign scaffolds had well-formed structures with buried residues and solvent exposed areas that closely matched their native counterparts. Despite the high fidelity to the input SS restraints and local structural characteristics of native proteins, a large portion of the designed scaffolds possessed global folds that were completely different from natural proteins in the PDB, highlighting the ability of FoldDesign to explore novel areas of protein fold space. Detailed data analyses demonstrated that the major contributions to the successful fold design lay in the optimal energy force field, which contains a balanced set of fragment and secondary structure packing terms, and the REMC simulations, which utilize multiple auxiliary movements to efficiently search the conformational space. These results demonstrate FoldDesign’s strong potential to explore both structural and functional space through computational design simulations that natural proteins have not reached through evolution. Significance Natural proteins were generated following billions of years of evolution and therefore possess limited structural folds and biological functions. There is considerable interest in de novo protein design to generate artificial proteins with novel structures and functions beyond those created by nature. However, the success rate of computational de novo protein design remains low, where extensive user-intervention and large-scale experimental optimization are typically required to achieve successful designs. To address this issue, we developed a new automated open-source program, FoldDesign, for de novo protein fold design which shows improved performance in creating high fidelity stable folds compared to other state-of-the-art methods. The success of FoldDesign should enable the creation of desired protein structures with promising clinical and industrial potential.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小艳胡发布了新的文献求助10
刚刚
SYLH应助Ethan采纳,获得10
刚刚
Z1987完成签到,获得积分10
刚刚
白凌珍发布了新的文献求助10
刚刚
自由的水绿完成签到 ,获得积分10
刚刚
完美世界应助如意枫叶采纳,获得10
刚刚
忐忑的以旋完成签到,获得积分10
1秒前
1秒前
温暖的颜演完成签到,获得积分10
1秒前
艾斯喜爱发布了新的文献求助10
2秒前
2秒前
仲某某完成签到,获得积分10
2秒前
明明发布了新的文献求助10
2秒前
今后应助xiaxianong采纳,获得10
2秒前
4秒前
乘风破浪完成签到,获得积分10
4秒前
egnaro应助埋骨何须桑梓地采纳,获得10
4秒前
yannnis发布了新的文献求助10
5秒前
孙福禄应助Star1983采纳,获得10
5秒前
5秒前
6秒前
Demonmaster完成签到,获得积分10
6秒前
元气糖发布了新的文献求助10
6秒前
凝望那片海2020完成签到,获得积分10
6秒前
清爽问夏发布了新的文献求助10
6秒前
7秒前
7秒前
Lee完成签到 ,获得积分10
7秒前
7秒前
钱小二发布了新的文献求助10
8秒前
8秒前
315947完成签到,获得积分10
8秒前
9秒前
冰阔落发布了新的文献求助10
9秒前
鳐鱼完成签到,获得积分10
9秒前
哈哈哈完成签到,获得积分10
9秒前
李健的小迷弟应助egnaro采纳,获得30
9秒前
没什么是看文献解决不了的完成签到,获得积分10
10秒前
害怕的凡英完成签到,获得积分10
10秒前
收集快乐发布了新的文献求助10
10秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986829
求助须知:如何正确求助?哪些是违规求助? 3529292
关于积分的说明 11244137
捐赠科研通 3267685
什么是DOI,文献DOI怎么找? 1803843
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808600