堆积
纤维素
材料科学
磷光
化学工程
空格(标点符号)
光电子学
光化学
化学
光学
有机化学
计算机科学
物理
荧光
工程类
操作系统
作者
Maozhu Zeng,Li Tang,Yingchun Liu,Xuliang Lin,Xihong Zu,Yingxiao Mu,Liheng Chen,Yanping Huo,Yanlin Qin
标识
DOI:10.1016/j.cej.2022.136935
摘要
• Cellulose-based materials with photo-enhanced pRTP properties is presented. • In-depth mechanism research with photo-enhanced pRTP properties of cellulose-based materials. • The excellent pRTP and mechanical properties in hot-pressed films are achieved. • Cellulose-based hot-pressed films are successfully employed for information encryption and flexible folding. Cellulose is environmentally friendly bio-based polymer with a large number of hydroxyl groups in its structure, which can easily form hydrogen bond networks. It has the potential to become excellent persistent room-temperature phosphorescence (pRTP) material through rational design. In this work, we reported a simple and universal strategy to obtain polymer film by connecting aromatic derivatives onto cellulose chains and drying them by hot press process. The emission color of pRTP from blue-green to red can be tuned by benzene or different polycyclic aromatic hydrocarbons as grafted groups, as well as the performance of photo-enhanced pRTP property. Notably, the lifetime of the best-performing film could be enhanced from 282.1 ms to 571.1 ms after irradiation for 1 min at room temperature. All the hot-pressed films were able to withstand Young's modulus up to nearly 18.0 GPa and tensile strength of around 80 MPa. The excellent luminescent and mechanical properties were derived from space stacking effects of the grafted groups and abundant intermolecular hydrogen bonding. These results will provide the effective design strategy for the modulation of smart-response pRTP materials, and expand the application range of cellulose-based materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI