膜
膜污染
化学工程
结垢
材料科学
电解
化学
色谱法
电极
生物化学
物理化学
工程类
电解质
作者
Shihao Zhou,Junwen Zhu,Zunrui Wang,Zhen Yang,Weiben Yang,Zhonglong Yin
出处
期刊:Water Research
[Elsevier]
日期:2022-05-18
卷期号:220: 118635-118635
被引量:40
标识
DOI:10.1016/j.watres.2022.118635
摘要
In order to resolve the poor antibiotics rejection and serious fouling of ultrafiltration (UF) membrane during municipal wastewater reclamation, a novel anodic membrane (defective UiO-66 (D-UiO-66)/Graphite/Polyvinylidene fluoride (PVDF)) with high pure water flux (596.1 L•h - 1•m - 2•bar-1) was fabricated by incorporating defective zirconium based metal-organic framework (D-UiO-66) and conductive graphite particles into PVDF matrix and applied in the coupling of electro-oxidation and membrane filtration process. Compared to the other anodic membranes (i.e., Graphite/PVDF and UiO-66/Graphite/PVDF), D-UiO-66/Graphite/PVDF possesses superior anti-fouling and self-cleaning abilities (flux recovery=100%, model foulant: bovine serum albumin) in both intermittent and continuous supply of electric field under current density of 0.01 mA/cm2; moreover, efficient antibiotics (tetracycline, norfloxacin, tylosin and sulfamethoxazole) removal (> 96.6%) and bactericidal efficiency against E. coli and S. aureus (100%) were achieved simultaneously without the addition of chemical reagents due to the higher electrocatalytic activity of anodic membrane for oxidation of pollutants by •OH and •O2- free radicals. Three degradation pathways of antibiotics were proposed and the self-cleaning mechanism of membrane was dominated by the synergy of the partial mineralization and the reduced fouling potential of foulants after oxidation as revealed by the increase in hydrophilicity, and decrease in negative charge and molecular weight. The fabricated membrane also presents excellent electrochemical stability, separation and self-cleaning performance for treatment of municipal secondary effluent during long-term filtration with low electric energy consumption, which is promising in wastewater reclamation.
科研通智能强力驱动
Strongly Powered by AbleSci AI