3D Hand Pose Estimation From Monocular RGB With Feature Interaction Module

人工智能 计算机科学 卷积神经网络 计算机视觉 姿势 RGB颜色模型 特征(语言学) 模式识别(心理学) 特征提取 单眼 语言学 哲学
作者
Shaoxiang Guo,Eric Rigall,Yakun Ju,Junyu Dong
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:32 (8): 5293-5306 被引量:3
标识
DOI:10.1109/tcsvt.2022.3142787
摘要

3D hand pose estimation from a monocular RGB image is a highly challenging task due to self-occlusion, diverse appearances, and inherent depth ambiguities within monocular images. Most of the previous methods first employ deep neural networks to fit 2D joint location maps, then combines them with implicit or explicit pose-aware features to directly regress 3D hand joints positions using their designed network structure. However, the skeleton positions and corresponding skeleton-aware content information located in the latent space are invariably ignored. These skeleton-aware contents effectively bridge the gap between hand joint and hand skeleton information by associating the relationship between different hand joints features and the hand skeleton positions distribution in 2D space. To address this issue, we propose a simple yet efficient deep neural network to directly recover reliable 3D hand pose from monocular RGB images with faster estimation process. Our purpose is the reduction of the model computational complexity while maintaining high precision performance. Therefore, we design a novel Feature Chat Block (FCB) to complete feature boosting, which enables the intuitively enhanced interaction between joint and skeleton features. First, this FCB module updates joint features effectively based on semantic graph convolutional neural network and multi-head self-attention mechanism. The GCN-based structure focuses on the physical hand joints included in a binary adjacency matrix and the self-attention part pays attention to hand joints located in a complementary matrix. Then, the FCB module employs query and key mechanisms respectively representing joint and skeleton features to further implement feature interaction. After a set of FCB modules, our model updates the fused features in a coarse-to-fine manner and finally outputs a predicted 3D hand pose. We conducted a comprehensive set of ablation experiments on the InterHand2.6M dataset to validate the effectiveness and significance of the proposed method. Additionally, experimental results on Rendered Hand Dataset, Stereo Hand Datasets, First-Person Hand Action Dataset and FreiHAND Dataset show our model surpasses the state-of-the-art methods with faster inference speed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助zzznznnn采纳,获得10
刚刚
哈哈完成签到,获得积分20
1秒前
阳光衣完成签到,获得积分0
1秒前
3秒前
苏兴龙关注了科研通微信公众号
3秒前
3秒前
脑洞疼应助谦让的含海采纳,获得10
3秒前
华华发布了新的文献求助10
3秒前
3秒前
Orange应助命运的X号采纳,获得10
3秒前
云澈完成签到,获得积分10
5秒前
风趣的觅山完成签到,获得积分10
5秒前
打打应助SCI采纳,获得50
5秒前
pinging应助Wang采纳,获得10
5秒前
5秒前
灵巧荆发布了新的文献求助10
6秒前
和谐续完成签到 ,获得积分10
6秒前
李健应助是天使呢采纳,获得10
6秒前
6秒前
7秒前
香菜兔子完成签到,获得积分10
7秒前
茶艺大师づ完成签到,获得积分0
7秒前
蓝愿完成签到,获得积分10
7秒前
8秒前
努力的小狗屁完成签到,获得积分10
8秒前
8秒前
慕青应助彬彬采纳,获得10
9秒前
飘逸蘑菇关注了科研通微信公众号
9秒前
八十关注了科研通微信公众号
10秒前
10秒前
10秒前
11秒前
12秒前
摸鱼摸鱼摸摸鱼完成签到,获得积分10
12秒前
xiaoputaor完成签到 ,获得积分10
13秒前
万能图书馆应助yana采纳,获得20
14秒前
兽医12138完成签到 ,获得积分10
14秒前
苏苏发布了新的文献求助10
14秒前
烯灯完成签到,获得积分10
15秒前
慕青应助哈哈采纳,获得10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794