3D Hand Pose Estimation From Monocular RGB With Feature Interaction Module

人工智能 计算机科学 卷积神经网络 计算机视觉 姿势 RGB颜色模型 特征(语言学) 模式识别(心理学) 特征提取 单眼 语言学 哲学
作者
Shaoxiang Guo,Eric Rigall,Yakun Ju,Junyu Dong
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:32 (8): 5293-5306 被引量:3
标识
DOI:10.1109/tcsvt.2022.3142787
摘要

3D hand pose estimation from a monocular RGB image is a highly challenging task due to self-occlusion, diverse appearances, and inherent depth ambiguities within monocular images. Most of the previous methods first employ deep neural networks to fit 2D joint location maps, then combines them with implicit or explicit pose-aware features to directly regress 3D hand joints positions using their designed network structure. However, the skeleton positions and corresponding skeleton-aware content information located in the latent space are invariably ignored. These skeleton-aware contents effectively bridge the gap between hand joint and hand skeleton information by associating the relationship between different hand joints features and the hand skeleton positions distribution in 2D space. To address this issue, we propose a simple yet efficient deep neural network to directly recover reliable 3D hand pose from monocular RGB images with faster estimation process. Our purpose is the reduction of the model computational complexity while maintaining high precision performance. Therefore, we design a novel Feature Chat Block (FCB) to complete feature boosting, which enables the intuitively enhanced interaction between joint and skeleton features. First, this FCB module updates joint features effectively based on semantic graph convolutional neural network and multi-head self-attention mechanism. The GCN-based structure focuses on the physical hand joints included in a binary adjacency matrix and the self-attention part pays attention to hand joints located in a complementary matrix. Then, the FCB module employs query and key mechanisms respectively representing joint and skeleton features to further implement feature interaction. After a set of FCB modules, our model updates the fused features in a coarse-to-fine manner and finally outputs a predicted 3D hand pose. We conducted a comprehensive set of ablation experiments on the InterHand2.6M dataset to validate the effectiveness and significance of the proposed method. Additionally, experimental results on Rendered Hand Dataset, Stereo Hand Datasets, First-Person Hand Action Dataset and FreiHAND Dataset show our model surpasses the state-of-the-art methods with faster inference speed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
瞎闹腾完成签到,获得积分10
1秒前
cugwzr完成签到,获得积分10
1秒前
1秒前
无花果应助威武鸽子采纳,获得10
2秒前
WYF发布了新的文献求助10
2秒前
rosa发布了新的文献求助10
3秒前
3秒前
啊哭发布了新的文献求助10
4秒前
5秒前
malo完成签到,获得积分20
5秒前
愉快发布了新的文献求助10
7秒前
啦啦啦发布了新的文献求助10
7秒前
ninalee完成签到,获得积分10
7秒前
WYF完成签到,获得积分10
8秒前
Steven发布了新的文献求助10
8秒前
魔音甜菜发布了新的文献求助10
9秒前
存慎完成签到 ,获得积分10
12秒前
乌龟完成签到,获得积分10
13秒前
15秒前
LimiT完成签到,获得积分10
17秒前
replay完成签到,获得积分10
17秒前
Steven发布了新的文献求助10
18秒前
愉快完成签到,获得积分10
19秒前
21秒前
22秒前
李健的小迷弟应助fate8680采纳,获得10
25秒前
25秒前
健康的鹰发布了新的文献求助10
26秒前
kytm完成签到,获得积分10
27秒前
香蕉觅云应助科研通管家采纳,获得10
27秒前
烟花应助科研通管家采纳,获得10
27秒前
Newt应助科研通管家采纳,获得10
27秒前
隐形曼青应助科研通管家采纳,获得10
27秒前
英姑应助科研通管家采纳,获得10
28秒前
28秒前
28秒前
28秒前
stt1011完成签到,获得积分10
30秒前
30秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998871
求助须知:如何正确求助?哪些是违规求助? 3538355
关于积分的说明 11273977
捐赠科研通 3277299
什么是DOI,文献DOI怎么找? 1807509
邀请新用户注册赠送积分活动 883909
科研通“疑难数据库(出版商)”最低求助积分说明 810075