Developing Improved Time-Series DMSP-OLS-Like Data (1992–2019) in China by Integrating DMSP-OLS and SNPP-VIIRS

可见红外成像辐射计套件 国防气象卫星计划 普通最小二乘法 气象学 缺少数据 数据同化 遥感 环境科学 校准 计算机科学 卫星 数学 统计 地理 工程类 航空航天工程
作者
Yizhen Wu,Kaifang Shi,Zuoqi Chen,Shirao Liu,Zhijian Chang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-14 被引量:119
标识
DOI:10.1109/tgrs.2021.3135333
摘要

Defense Meteorological Satellite Program Operational Linescan System (DMSP-OLS) and Suomi National Polar-orbiting Partnership Visible Infrared Imaging Radiometer Suite (SNPP-VIIRS) data are valuable records of nighttime lights (NTLs) in analyzing socioeconomic development. However, inconsistencies between these data have severely restricted long time-series analyses. Published time-series NTL data sets are not widely available or accurate because the DMSP-OLS calibration is inadequate and some missing data in the SNPP-VIIRS data are seldom considered for patching. To address these issues, we calibrated DMSP-OLS data (1992–2013) by using a quadratic model based on a “pseudo-invariant pixel” method. Thereafter, an exponential smoothing model was used to predict and patch missing data in the monthly SNPP-VIIRS data (2013–2019). Outliers and noise were also removed from the annual data. In addition, a sigmoid model was employed to generate improved simulated DMSP-OLS (SDMSP-OLS) data (2013–2019), which were appended with the calibrated DMSP-OLS data (1992–2013) to develop improved DMSP-OLS-like data (1992–2019) in China. Finally, we qualitatively and quantitatively compared these data with published NTL data to examine data availability. Results showed that choosing invariant pixels to calibrate DMSP-OLS data can minimize discontinuity. The correlation between the SNPP-VIIRS data synthesized by the patched monthly SNPP-VIIRS data and the official annual SNPP-VIIRS data in 2015 ( $R^{2} =0.931$ ) and 2016 ( $R^{2} =0.930$ ) was higher than those of the two existing correction methods with $R^{2}$ values below 0.90. Spatial patterns of pixels in the improved SDMSP-OLS data in 2013 were more similar with the DMSP-OLS data than those in the published data. Strong correlations likewise existed between the total (average) pixel values of the improved SDMSP-OLS data (2013–2019) and the DMSP-OLS data in 2012. We also found that the improved DMSP-OLS-like data held strong linear correlations with different statistics, the average $R^{2}$ values of which were 0.931 and 0.654 at the national and provincial levels, respectively. Meanwhile, the average regression $R^{2}$ values between the two published data sets and statistics were 0.858/0.506 and 0.911/0.611, respectively. Our study has proven that the improved DMSP-OLS-like data (1992–2019) have immense potential to effectively evaluate socioeconomic development and anthropic activities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
络巫琥关注了科研通微信公众号
刚刚
刚刚
刚刚
思源应助LMH采纳,获得10
刚刚
木头人应助研友_nEWly8采纳,获得10
1秒前
s1mple发布了新的文献求助10
1秒前
1秒前
英姑应助Polarbear29采纳,获得10
1秒前
脑洞疼应助SUN采纳,获得10
1秒前
2秒前
bkagyin应助心想事成采纳,获得10
2秒前
whhhhh发布了新的文献求助30
2秒前
ding应助义气鲂采纳,获得10
2秒前
脑洞疼应助篱篱清采纳,获得30
2秒前
情怀应助Eraser采纳,获得10
2秒前
rudjs发布了新的文献求助10
3秒前
林hh发布了新的文献求助10
3秒前
成长的点滴完成签到,获得积分10
3秒前
3秒前
3秒前
kuku_99发布了新的文献求助200
4秒前
苏莉婷完成签到,获得积分10
4秒前
4秒前
哈哈的哈哈应助XX采纳,获得20
4秒前
peach发布了新的文献求助10
4秒前
4秒前
5秒前
谜迪发布了新的文献求助10
5秒前
6秒前
共享精神应助西红柿采纳,获得10
6秒前
6秒前
6秒前
科研通AI6应助Matrix采纳,获得10
7秒前
orixero应助强壮的美女采纳,获得10
7秒前
7秒前
红糖完成签到,获得积分20
7秒前
糊涂的笑天完成签到 ,获得积分10
7秒前
7秒前
小昭发布了新的文献求助10
7秒前
虎皮猫大人应助echo采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5286035
求助须知:如何正确求助?哪些是违规求助? 4438924
关于积分的说明 13819501
捐赠科研通 4320540
什么是DOI,文献DOI怎么找? 2371517
邀请新用户注册赠送积分活动 1367063
关于科研通互助平台的介绍 1330462