已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Developing Improved Time-Series DMSP-OLS-Like Data (1992–2019) in China by Integrating DMSP-OLS and SNPP-VIIRS

可见红外成像辐射计套件 国防气象卫星计划 普通最小二乘法 气象学 缺少数据 数据同化 遥感 环境科学 校准 计算机科学 卫星 数学 统计 地理 工程类 航空航天工程
作者
Yizhen Wu,Kaifang Shi,Zuoqi Chen,Shirao Liu,Zhijian Chang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-14 被引量:132
标识
DOI:10.1109/tgrs.2021.3135333
摘要

Defense Meteorological Satellite Program Operational Linescan System (DMSP-OLS) and Suomi National Polar-orbiting Partnership Visible Infrared Imaging Radiometer Suite (SNPP-VIIRS) data are valuable records of nighttime lights (NTLs) in analyzing socioeconomic development. However, inconsistencies between these data have severely restricted long time-series analyses. Published time-series NTL data sets are not widely available or accurate because the DMSP-OLS calibration is inadequate and some missing data in the SNPP-VIIRS data are seldom considered for patching. To address these issues, we calibrated DMSP-OLS data (1992–2013) by using a quadratic model based on a “pseudo-invariant pixel” method. Thereafter, an exponential smoothing model was used to predict and patch missing data in the monthly SNPP-VIIRS data (2013–2019). Outliers and noise were also removed from the annual data. In addition, a sigmoid model was employed to generate improved simulated DMSP-OLS (SDMSP-OLS) data (2013–2019), which were appended with the calibrated DMSP-OLS data (1992–2013) to develop improved DMSP-OLS-like data (1992–2019) in China. Finally, we qualitatively and quantitatively compared these data with published NTL data to examine data availability. Results showed that choosing invariant pixels to calibrate DMSP-OLS data can minimize discontinuity. The correlation between the SNPP-VIIRS data synthesized by the patched monthly SNPP-VIIRS data and the official annual SNPP-VIIRS data in 2015 ( $R^{2} =0.931$ ) and 2016 ( $R^{2} =0.930$ ) was higher than those of the two existing correction methods with $R^{2}$ values below 0.90. Spatial patterns of pixels in the improved SDMSP-OLS data in 2013 were more similar with the DMSP-OLS data than those in the published data. Strong correlations likewise existed between the total (average) pixel values of the improved SDMSP-OLS data (2013–2019) and the DMSP-OLS data in 2012. We also found that the improved DMSP-OLS-like data held strong linear correlations with different statistics, the average $R^{2}$ values of which were 0.931 and 0.654 at the national and provincial levels, respectively. Meanwhile, the average regression $R^{2}$ values between the two published data sets and statistics were 0.858/0.506 and 0.911/0.611, respectively. Our study has proven that the improved DMSP-OLS-like data (1992–2019) have immense potential to effectively evaluate socioeconomic development and anthropic activities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gooooose完成签到,获得积分20
刚刚
红豆盖饭完成签到,获得积分10
刚刚
小肥羊完成签到 ,获得积分10
1秒前
科研通AI6.1应助LYCORIS采纳,获得10
2秒前
丘比特应助Lexi28采纳,获得10
2秒前
3秒前
土豆完成签到 ,获得积分10
3秒前
善学以致用应助张涵晟采纳,获得10
3秒前
一碘碘Q完成签到,获得积分10
3秒前
充电宝应助张涵晟采纳,获得10
3秒前
SciGPT应助张涵晟采纳,获得10
3秒前
传奇3应助张涵晟采纳,获得10
4秒前
JamesPei应助张涵晟采纳,获得10
4秒前
共享精神应助张涵晟采纳,获得10
4秒前
JamesPei应助张涵晟采纳,获得10
4秒前
Lucas应助张涵晟采纳,获得10
4秒前
丘比特应助张涵晟采纳,获得10
4秒前
隐形曼青应助张涵晟采纳,获得10
4秒前
OK完成签到 ,获得积分10
5秒前
Kq_完成签到,获得积分10
5秒前
辛勤的龙猫应助Ginger采纳,获得10
6秒前
优秀的傲南完成签到,获得积分10
7秒前
无极微光应助环境恢复采纳,获得20
7秒前
10秒前
10秒前
华仔应助张涵晟采纳,获得10
10秒前
10秒前
乐乐应助张涵晟采纳,获得10
10秒前
传奇3应助张涵晟采纳,获得10
11秒前
我是老大应助张涵晟采纳,获得30
11秒前
小二郎应助张涵晟采纳,获得10
11秒前
小蘑菇应助张涵晟采纳,获得30
11秒前
11秒前
在水一方应助张涵晟采纳,获得10
11秒前
打打应助张涵晟采纳,获得10
11秒前
赘婿应助张涵晟采纳,获得10
11秒前
小二郎应助张涵晟采纳,获得10
11秒前
小蘑菇应助科研迪采纳,获得10
12秒前
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
the Oxford Guide to the Bantu Languages 3000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5763203
求助须知:如何正确求助?哪些是违规求助? 5539414
关于积分的说明 15404436
捐赠科研通 4899064
什么是DOI,文献DOI怎么找? 2635276
邀请新用户注册赠送积分活动 1583372
关于科研通互助平台的介绍 1538497