Automatic Radar-Camera Dataset Generation for Sensor-Fusion Applications

计算机科学 人工智能 雷达 计算机视觉 质心 数据集 点云 传感器融合 管道(软件) 雷达成像 目标检测 模式识别(心理学) 电信 程序设计语言
作者
Arindam Sengupta,Atsushi Yoshizawa,Siyang Cao
出处
期刊:IEEE robotics and automation letters 卷期号:7 (2): 2875-2882 被引量:16
标识
DOI:10.1109/lra.2022.3144524
摘要

Withheterogeneous sensors offering complementary advantages in perception, there has been a significant growth in sensor-fusion based research and development in object perception and tracking using classical or deep neural networks based approaches. However, supervised learning requires massive labeled data-sets, that require expensive manual labor to generate. This paper presents a novel approach that leverages YOLOv3 based highly accurate object detection from camera to automatically label point cloud data obtained from a co-calibrated radar sensor to generate labeled radar-image and radar-only data-sets to aid learning algorithms for different applications. To achieve this we first co-calibrate the vision and radar sensors and obtain a radar-to-camera transformation matrix. The collected radar returns are segregated by different targets using a density based clustering scheme and the cluster centroids are projected onto the camera image using the transformation matrix. The Hungarian Algorithm is then used to associate the radar cluster centroids with the YOLOv3 generated bounding box centroids, and are labeled with the predicted class. The proposed approach is efficient, easy to implement and aims to encourage rapid development of multi-sensor data-sets, which are extremely limited currently, compared to the optical counterparts. The calibration process, software pipeline and the data-set generation is described in detail. Furthermore preliminary results from two sample applications for object detection using the data-sets are also presented.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Evelyn发布了新的文献求助10
刚刚
hl完成签到,获得积分10
1秒前
拖拉机完成签到,获得积分10
1秒前
明朗发布了新的文献求助10
2秒前
哈哈完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
3秒前
大个应助负责冰烟采纳,获得10
3秒前
和谐的孱完成签到,获得积分10
3秒前
星辰大海应助申左一采纳,获得10
4秒前
随风而动123完成签到,获得积分10
4秒前
ldkl应助拖拉机采纳,获得30
4秒前
科研通AI5应助zy采纳,获得10
5秒前
yuehui完成签到,获得积分10
5秒前
紧张的冷卉完成签到,获得积分10
5秒前
勤劳樱发布了新的文献求助10
5秒前
晨芒完成签到,获得积分10
6秒前
6秒前
思源应助tthh采纳,获得10
6秒前
6秒前
6秒前
7秒前
7秒前
wanci应助风趣飞柏采纳,获得50
8秒前
小二郎应助孤独衣采纳,获得10
8秒前
汉堡包应助不够萌采纳,获得10
8秒前
浩离完成签到,获得积分10
8秒前
8秒前
9秒前
爆米花应助DT采纳,获得10
9秒前
烟花应助程程采纳,获得10
9秒前
星辰大海应助危机的沛山采纳,获得10
9秒前
丘比特应助yuqinglei采纳,获得10
10秒前
时不时完成签到,获得积分10
10秒前
liz发布了新的文献求助10
10秒前
DYQin发布了新的文献求助10
10秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603379
求助须知:如何正确求助?哪些是违规求助? 4012139
关于积分的说明 12422052
捐赠科研通 3692589
什么是DOI,文献DOI怎么找? 2035723
邀请新用户注册赠送积分活动 1068884
科研通“疑难数据库(出版商)”最低求助积分说明 953371