Automatic Radar-Camera Dataset Generation for Sensor-Fusion Applications

计算机科学 人工智能 雷达 计算机视觉 质心 数据集 点云 传感器融合 管道(软件) 雷达成像 目标检测 模式识别(心理学) 电信 程序设计语言
作者
Arindam Sengupta,Atsushi Yoshizawa,Siyang Cao
出处
期刊:IEEE robotics and automation letters 卷期号:7 (2): 2875-2882 被引量:16
标识
DOI:10.1109/lra.2022.3144524
摘要

Withheterogeneous sensors offering complementary advantages in perception, there has been a significant growth in sensor-fusion based research and development in object perception and tracking using classical or deep neural networks based approaches. However, supervised learning requires massive labeled data-sets, that require expensive manual labor to generate. This paper presents a novel approach that leverages YOLOv3 based highly accurate object detection from camera to automatically label point cloud data obtained from a co-calibrated radar sensor to generate labeled radar-image and radar-only data-sets to aid learning algorithms for different applications. To achieve this we first co-calibrate the vision and radar sensors and obtain a radar-to-camera transformation matrix. The collected radar returns are segregated by different targets using a density based clustering scheme and the cluster centroids are projected onto the camera image using the transformation matrix. The Hungarian Algorithm is then used to associate the radar cluster centroids with the YOLOv3 generated bounding box centroids, and are labeled with the predicted class. The proposed approach is efficient, easy to implement and aims to encourage rapid development of multi-sensor data-sets, which are extremely limited currently, compared to the optical counterparts. The calibration process, software pipeline and the data-set generation is described in detail. Furthermore preliminary results from two sample applications for object detection using the data-sets are also presented.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
schnappi应助明水采纳,获得50
刚刚
wenhao完成签到,获得积分10
1秒前
1秒前
junyue完成签到,获得积分10
1秒前
毛毛完成签到,获得积分10
1秒前
2秒前
醉熏的涫发布了新的文献求助10
3秒前
3秒前
寒冷的帆布鞋完成签到,获得积分10
4秒前
junyue发布了新的文献求助10
5秒前
思源应助xd采纳,获得10
5秒前
Upupupiu发布了新的文献求助10
6秒前
zhu发布了新的文献求助30
6秒前
kento完成签到,获得积分0
7秒前
8秒前
CodeCraft应助Nakacoke77采纳,获得10
8秒前
哈喽发布了新的文献求助10
8秒前
橙子完成签到 ,获得积分10
8秒前
bbbbb发布了新的文献求助50
9秒前
9秒前
华仔应助执着的凝琴采纳,获得10
9秒前
Jasper应助嗯哦吧啦采纳,获得10
9秒前
CodeCraft应助Eusly采纳,获得10
11秒前
12秒前
12秒前
重要衬衫完成签到,获得积分10
13秒前
14秒前
15秒前
苹果冬莲完成签到,获得积分10
16秒前
ccwu发布了新的文献求助10
16秒前
研友_24789发布了新的文献求助10
17秒前
哈哈哈完成签到 ,获得积分10
17秒前
Akim应助哈喽采纳,获得10
17秒前
云朵完成签到 ,获得积分10
17秒前
星辰大海应助阿水采纳,获得10
17秒前
18秒前
Upupupiu完成签到,获得积分10
19秒前
HHHHHH完成签到 ,获得积分10
20秒前
wanci应助juphen2采纳,获得10
20秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958929
求助须知:如何正确求助?哪些是违规求助? 3505199
关于积分的说明 11122925
捐赠科研通 3236708
什么是DOI,文献DOI怎么找? 1788949
邀请新用户注册赠送积分活动 871444
科研通“疑难数据库(出版商)”最低求助积分说明 802794