Automatic Radar-Camera Dataset Generation for Sensor-Fusion Applications

计算机科学 人工智能 雷达 计算机视觉 质心 数据集 点云 传感器融合 管道(软件) 雷达成像 目标检测 模式识别(心理学) 电信 程序设计语言
作者
Arindam Sengupta,Atsushi Yoshizawa,Siyang Cao
出处
期刊:IEEE robotics and automation letters 卷期号:7 (2): 2875-2882 被引量:16
标识
DOI:10.1109/lra.2022.3144524
摘要

Withheterogeneous sensors offering complementary advantages in perception, there has been a significant growth in sensor-fusion based research and development in object perception and tracking using classical or deep neural networks based approaches. However, supervised learning requires massive labeled data-sets, that require expensive manual labor to generate. This paper presents a novel approach that leverages YOLOv3 based highly accurate object detection from camera to automatically label point cloud data obtained from a co-calibrated radar sensor to generate labeled radar-image and radar-only data-sets to aid learning algorithms for different applications. To achieve this we first co-calibrate the vision and radar sensors and obtain a radar-to-camera transformation matrix. The collected radar returns are segregated by different targets using a density based clustering scheme and the cluster centroids are projected onto the camera image using the transformation matrix. The Hungarian Algorithm is then used to associate the radar cluster centroids with the YOLOv3 generated bounding box centroids, and are labeled with the predicted class. The proposed approach is efficient, easy to implement and aims to encourage rapid development of multi-sensor data-sets, which are extremely limited currently, compared to the optical counterparts. The calibration process, software pipeline and the data-set generation is described in detail. Furthermore preliminary results from two sample applications for object detection using the data-sets are also presented.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
钟是一梦完成签到,获得积分10
1秒前
1秒前
wanci应助Ll采纳,获得10
1秒前
2秒前
2秒前
孟柠柠发布了新的文献求助10
2秒前
青阳完成签到,获得积分10
3秒前
科研狗发布了新的文献求助20
4秒前
5秒前
5秒前
jarenthar完成签到 ,获得积分10
5秒前
5秒前
丘比特应助hata采纳,获得10
5秒前
顾矜应助lszhw采纳,获得10
6秒前
lqq完成签到 ,获得积分10
6秒前
6秒前
共享精神应助拟拟采纳,获得10
6秒前
6秒前
lhy12345完成签到,获得积分10
6秒前
非常可爱发布了新的文献求助20
7秒前
7秒前
7秒前
7秒前
科研民工发布了新的文献求助10
8秒前
文艺的初蓝完成签到 ,获得积分10
8秒前
TiAmo发布了新的文献求助10
8秒前
刘十三完成签到,获得积分10
8秒前
8秒前
犹豫忆南完成签到,获得积分10
9秒前
科研通AI5应助kingwhitewing采纳,获得10
10秒前
10秒前
mm关注了科研通微信公众号
10秒前
xieyuanxing发布了新的文献求助10
10秒前
10秒前
左然然完成签到,获得积分10
10秒前
10秒前
人福药业完成签到,获得积分10
11秒前
11秒前
JamesPei应助科研通管家采纳,获得10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740