Exploiting pretrained CNN models for the development of an EEG-based robust BCI framework

脑-机接口 计算机科学 脑电图 运动表象 人工智能 模式识别(心理学) 卷积神经网络 特征提取 主成分分析 特征(语言学) 语音识别 机器学习 神经科学 心理学 语言学 哲学
作者
Muhammad Tariq Sadiq,Muhammad Zulkifal Aziz,Ahmad Almogren,Adnan Yousaf,Siuly Siuly,Ateeq Ur Rehman
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:143: 105242-105242 被引量:76
标识
DOI:10.1016/j.compbiomed.2022.105242
摘要

Identifying motor and mental imagery electroencephalography (EEG) signals is imperative to realizing automated, robust brain-computer interface (BCI) systems. In the present study, we proposed a pretrained convolutional neural network (CNN)-based new automated framework feasible for robust BCI systems with small and ample samples of motor and mental imagery EEG training data. The framework is explored by investigating the implications of different limiting factors, such as learning rates and optimizers, processed versus unprocessed scalograms, and features derived from untuned pretrained models in small, medium, and large pretrained CNN models. The experiments were performed on three public datasets obtained from BCI Competition III. The datasets were denoised with multiscale principal component analysis, and time-frequency scalograms were obtained by employing a continuous wavelet transform. The scalograms were fed into several variants of ten pretrained models for feature extraction and identification of different EEG tasks. The experimental results showed that ShuffleNet yielded the maximum average classification accuracy of 99.52% using an RMSProp optimizer with a learning rate of 0.000 1. It was observed that low learning rates converge to more optimal performances compared to high learning rates. Moreover, noisy scalograms and features extracted from untuned networks resulted in slightly lower performance than denoised scalograms and tuned networks, respectively. The overall results suggest that pretrained models are robust when identifying EEG signals because of their ability to preserve the time-frequency structure of EEG signals and promising classification outcomes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
321发布了新的文献求助50
刚刚
momo发布了新的文献求助10
1秒前
小马甲应助邵初蓝采纳,获得10
1秒前
caicai完成签到,获得积分10
1秒前
2秒前
syvshc应助人类不宜搞科研采纳,获得10
2秒前
2秒前
shirley完成签到,获得积分10
3秒前
YY再摆烂发布了新的文献求助10
3秒前
Hello应助自信彩虹采纳,获得10
3秒前
Zwj完成签到 ,获得积分10
4秒前
stresm完成签到,获得积分10
5秒前
李爱国应助倚楼听风雨采纳,获得10
5秒前
5秒前
CNS之神完成签到 ,获得积分10
5秒前
nature榜上关注了科研通微信公众号
6秒前
元谷雪发布了新的文献求助10
6秒前
无恙发布了新的文献求助10
6秒前
7秒前
昔颜完成签到,获得积分10
7秒前
7秒前
田様应助Mt采纳,获得10
9秒前
LUO完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
10秒前
量子星尘发布了新的文献求助10
12秒前
问夏发布了新的文献求助10
12秒前
Zyw完成签到 ,获得积分10
12秒前
13秒前
乌贼完成签到 ,获得积分10
13秒前
陆驳发布了新的文献求助10
13秒前
暖风sunny完成签到,获得积分10
14秒前
高兴的百褶裙完成签到,获得积分10
14秒前
SciGPT应助无wu采纳,获得10
15秒前
萧萧完成签到,获得积分0
15秒前
16秒前
16秒前
17秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695307
求助须知:如何正确求助?哪些是违规求助? 5101268
关于积分的说明 15215811
捐赠科研通 4851665
什么是DOI,文献DOI怎么找? 2602640
邀请新用户注册赠送积分活动 1554296
关于科研通互助平台的介绍 1512277