Exploiting pretrained CNN models for the development of an EEG-based robust BCI framework

脑-机接口 计算机科学 脑电图 运动表象 人工智能 模式识别(心理学) 卷积神经网络 特征提取 主成分分析 特征(语言学) 语音识别 机器学习 神经科学 心理学 语言学 哲学
作者
Muhammad Tariq Sadiq,Muhammad Zulkifal Aziz,Ahmad Almogren,Adnan Yousaf,Siuly Siuly,Ateeq Ur Rehman
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:143: 105242-105242 被引量:76
标识
DOI:10.1016/j.compbiomed.2022.105242
摘要

Identifying motor and mental imagery electroencephalography (EEG) signals is imperative to realizing automated, robust brain-computer interface (BCI) systems. In the present study, we proposed a pretrained convolutional neural network (CNN)-based new automated framework feasible for robust BCI systems with small and ample samples of motor and mental imagery EEG training data. The framework is explored by investigating the implications of different limiting factors, such as learning rates and optimizers, processed versus unprocessed scalograms, and features derived from untuned pretrained models in small, medium, and large pretrained CNN models. The experiments were performed on three public datasets obtained from BCI Competition III. The datasets were denoised with multiscale principal component analysis, and time-frequency scalograms were obtained by employing a continuous wavelet transform. The scalograms were fed into several variants of ten pretrained models for feature extraction and identification of different EEG tasks. The experimental results showed that ShuffleNet yielded the maximum average classification accuracy of 99.52% using an RMSProp optimizer with a learning rate of 0.000 1. It was observed that low learning rates converge to more optimal performances compared to high learning rates. Moreover, noisy scalograms and features extracted from untuned networks resulted in slightly lower performance than denoised scalograms and tuned networks, respectively. The overall results suggest that pretrained models are robust when identifying EEG signals because of their ability to preserve the time-frequency structure of EEG signals and promising classification outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
奶茶的后来完成签到,获得积分10
3秒前
hzs完成签到,获得积分10
3秒前
charles完成签到,获得积分10
3秒前
Aegean完成签到,获得积分10
3秒前
时遇完成签到,获得积分10
3秒前
所所应助深情的大碗采纳,获得10
3秒前
小宇OvO发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
娜尼啊发布了新的文献求助10
5秒前
哈哈哈哈发布了新的文献求助10
6秒前
李健的小迷弟应助kate采纳,获得50
6秒前
天天快乐应助红莲墨生采纳,获得10
7秒前
读书人完成签到,获得积分10
7秒前
吃货发布了新的文献求助10
7秒前
7秒前
innocence@x发布了新的文献求助20
8秒前
9秒前
李睿晨完成签到,获得积分10
10秒前
10秒前
zihanwang应助小白采纳,获得20
11秒前
12秒前
liuying2发布了新的文献求助10
12秒前
13秒前
科目三应助zzz采纳,获得10
13秒前
领导范儿应助can采纳,获得10
13秒前
ff999完成签到,获得积分10
14秒前
小宇OvO完成签到,获得积分20
14秒前
dong应助yusuf采纳,获得10
15秒前
大模型应助吃货采纳,获得10
17秒前
打打应助楼芷天采纳,获得10
17秒前
CAOHOU应助难搞哦采纳,获得10
18秒前
CAOHOU应助难搞哦采纳,获得10
18秒前
比比谁的速度快应助难搞哦采纳,获得100
18秒前
18秒前
Rosaline完成签到 ,获得积分10
19秒前
红莲墨生发布了新的文献求助10
19秒前
网上飞完成签到,获得积分10
19秒前
Orange应助sd采纳,获得10
21秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4010961
求助须知:如何正确求助?哪些是违规求助? 3550599
关于积分的说明 11306013
捐赠科研通 3284931
什么是DOI,文献DOI怎么找? 1810918
邀请新用户注册赠送积分活动 886594
科研通“疑难数据库(出版商)”最低求助积分说明 811514