亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Exploiting pretrained CNN models for the development of an EEG-based robust BCI framework

脑-机接口 计算机科学 脑电图 运动表象 人工智能 模式识别(心理学) 卷积神经网络 特征提取 主成分分析 特征(语言学) 语音识别 机器学习 神经科学 心理学 语言学 哲学
作者
Muhammad Tariq Sadiq,Muhammad Zulkifal Aziz,Ahmad Almogren,Adnan Yousaf,Siuly Siuly,Ateeq Ur Rehman
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:143: 105242-105242 被引量:76
标识
DOI:10.1016/j.compbiomed.2022.105242
摘要

Identifying motor and mental imagery electroencephalography (EEG) signals is imperative to realizing automated, robust brain-computer interface (BCI) systems. In the present study, we proposed a pretrained convolutional neural network (CNN)-based new automated framework feasible for robust BCI systems with small and ample samples of motor and mental imagery EEG training data. The framework is explored by investigating the implications of different limiting factors, such as learning rates and optimizers, processed versus unprocessed scalograms, and features derived from untuned pretrained models in small, medium, and large pretrained CNN models. The experiments were performed on three public datasets obtained from BCI Competition III. The datasets were denoised with multiscale principal component analysis, and time-frequency scalograms were obtained by employing a continuous wavelet transform. The scalograms were fed into several variants of ten pretrained models for feature extraction and identification of different EEG tasks. The experimental results showed that ShuffleNet yielded the maximum average classification accuracy of 99.52% using an RMSProp optimizer with a learning rate of 0.000 1. It was observed that low learning rates converge to more optimal performances compared to high learning rates. Moreover, noisy scalograms and features extracted from untuned networks resulted in slightly lower performance than denoised scalograms and tuned networks, respectively. The overall results suggest that pretrained models are robust when identifying EEG signals because of their ability to preserve the time-frequency structure of EEG signals and promising classification outcomes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lll完成签到,获得积分10
4秒前
hhh关闭了hhh文献求助
9秒前
hhuajw完成签到,获得积分10
16秒前
LLL完成签到,获得积分10
19秒前
LONG发布了新的文献求助10
23秒前
科目三应助LLL采纳,获得10
23秒前
搜集达人应助1461644768采纳,获得10
27秒前
沧浪完成签到,获得积分10
28秒前
histamin完成签到,获得积分10
28秒前
qiu关闭了qiu文献求助
30秒前
三年两篇以上SCI完成签到 ,获得积分20
33秒前
Criminology34应助科研通管家采纳,获得10
40秒前
科研通AI6应助科研通管家采纳,获得10
40秒前
Criminology34应助科研通管家采纳,获得10
40秒前
熬夜波比应助科研通管家采纳,获得10
41秒前
科研通AI2S应助科研通管家采纳,获得10
41秒前
绮罗完成签到 ,获得积分10
42秒前
qiu发布了新的文献求助10
43秒前
yxl要顺利毕业_发6篇C完成签到,获得积分10
44秒前
胖胖的江鸟完成签到 ,获得积分10
44秒前
51秒前
诸葛不亮完成签到,获得积分10
51秒前
qiu完成签到,获得积分10
56秒前
布林发布了新的文献求助10
57秒前
王敏娜完成签到 ,获得积分10
58秒前
肥牛完成签到,获得积分10
59秒前
Jasper应助zyy采纳,获得10
1分钟前
Jasper应助Shin采纳,获得10
1分钟前
menyu完成签到,获得积分10
1分钟前
111完成签到,获得积分10
1分钟前
1分钟前
zsyf完成签到,获得积分10
1分钟前
布林完成签到,获得积分20
1分钟前
menyu发布了新的文献求助10
1分钟前
抚琴祛魅完成签到 ,获得积分10
1分钟前
abc完成签到,获得积分10
1分钟前
不想起名发布了新的文献求助10
1分钟前
1分钟前
Vince发布了新的文献求助10
1分钟前
秦时明月完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5681194
求助须知:如何正确求助?哪些是违规求助? 5005631
关于积分的说明 15175172
捐赠科研通 4840849
什么是DOI,文献DOI怎么找? 2594550
邀请新用户注册赠送积分活动 1547639
关于科研通互助平台的介绍 1505605