Exploiting pretrained CNN models for the development of an EEG-based robust BCI framework

脑-机接口 计算机科学 脑电图 运动表象 人工智能 模式识别(心理学) 卷积神经网络 特征提取 主成分分析 特征(语言学) 语音识别 机器学习 神经科学 心理学 语言学 哲学
作者
Muhammad Tariq Sadiq,Muhammad Zulkifal Aziz,Ahmad Almogren,Adnan Yousaf,Siuly Siuly,Ateeq Ur Rehman
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:143: 105242-105242 被引量:76
标识
DOI:10.1016/j.compbiomed.2022.105242
摘要

Identifying motor and mental imagery electroencephalography (EEG) signals is imperative to realizing automated, robust brain-computer interface (BCI) systems. In the present study, we proposed a pretrained convolutional neural network (CNN)-based new automated framework feasible for robust BCI systems with small and ample samples of motor and mental imagery EEG training data. The framework is explored by investigating the implications of different limiting factors, such as learning rates and optimizers, processed versus unprocessed scalograms, and features derived from untuned pretrained models in small, medium, and large pretrained CNN models. The experiments were performed on three public datasets obtained from BCI Competition III. The datasets were denoised with multiscale principal component analysis, and time-frequency scalograms were obtained by employing a continuous wavelet transform. The scalograms were fed into several variants of ten pretrained models for feature extraction and identification of different EEG tasks. The experimental results showed that ShuffleNet yielded the maximum average classification accuracy of 99.52% using an RMSProp optimizer with a learning rate of 0.000 1. It was observed that low learning rates converge to more optimal performances compared to high learning rates. Moreover, noisy scalograms and features extracted from untuned networks resulted in slightly lower performance than denoised scalograms and tuned networks, respectively. The overall results suggest that pretrained models are robust when identifying EEG signals because of their ability to preserve the time-frequency structure of EEG signals and promising classification outcomes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xxxd发布了新的文献求助10
2秒前
小火车发布了新的文献求助10
2秒前
3秒前
3秒前
orixero应助太叔夜南采纳,获得10
3秒前
3秒前
3秒前
pu发布了新的文献求助10
3秒前
4秒前
自由的梦露完成签到,获得积分10
4秒前
6秒前
SciGPT应助123采纳,获得10
6秒前
名金学南发布了新的文献求助10
8秒前
科研通AI6.1应助小正采纳,获得10
8秒前
8秒前
拼搏靖巧发布了新的文献求助10
9秒前
9秒前
快乐若云应助yanghuiy1采纳,获得10
9秒前
9秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
辛勤的夏云完成签到 ,获得积分10
10秒前
有梦想的人完成签到,获得积分10
11秒前
幽壑之潜蛟应助1223采纳,获得10
11秒前
金水完成签到,获得积分10
11秒前
Mengxin发布了新的文献求助80
11秒前
12秒前
Una发布了新的文献求助10
14秒前
snowy完成签到,获得积分10
15秒前
15秒前
15秒前
核桃发布了新的文献求助10
15秒前
搞怪雪莲发布了新的文献求助10
16秒前
yznfly应助勤劳善良的胖蜜蜂采纳,获得200
17秒前
houyan完成签到,获得积分10
19秒前
19秒前
太叔夜南发布了新的文献求助10
19秒前
天天快乐应助深情素阴采纳,获得10
19秒前
20秒前
怕黑平蓝完成签到,获得积分10
20秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5744973
求助须知:如何正确求助?哪些是违规求助? 5423202
关于积分的说明 15351528
捐赠科研通 4885111
什么是DOI,文献DOI怎么找? 2626351
邀请新用户注册赠送积分活动 1575090
关于科研通互助平台的介绍 1531858