Exploiting pretrained CNN models for the development of an EEG-based robust BCI framework

脑-机接口 计算机科学 脑电图 运动表象 人工智能 模式识别(心理学) 卷积神经网络 特征提取 主成分分析 特征(语言学) 语音识别 机器学习 神经科学 心理学 语言学 哲学
作者
Muhammad Tariq Sadiq,Muhammad Zulkifal Aziz,Ahmad Almogren,Adnan Yousaf,Siuly Siuly,Ateeq Ur Rehman
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:143: 105242-105242 被引量:76
标识
DOI:10.1016/j.compbiomed.2022.105242
摘要

Identifying motor and mental imagery electroencephalography (EEG) signals is imperative to realizing automated, robust brain-computer interface (BCI) systems. In the present study, we proposed a pretrained convolutional neural network (CNN)-based new automated framework feasible for robust BCI systems with small and ample samples of motor and mental imagery EEG training data. The framework is explored by investigating the implications of different limiting factors, such as learning rates and optimizers, processed versus unprocessed scalograms, and features derived from untuned pretrained models in small, medium, and large pretrained CNN models. The experiments were performed on three public datasets obtained from BCI Competition III. The datasets were denoised with multiscale principal component analysis, and time-frequency scalograms were obtained by employing a continuous wavelet transform. The scalograms were fed into several variants of ten pretrained models for feature extraction and identification of different EEG tasks. The experimental results showed that ShuffleNet yielded the maximum average classification accuracy of 99.52% using an RMSProp optimizer with a learning rate of 0.000 1. It was observed that low learning rates converge to more optimal performances compared to high learning rates. Moreover, noisy scalograms and features extracted from untuned networks resulted in slightly lower performance than denoised scalograms and tuned networks, respectively. The overall results suggest that pretrained models are robust when identifying EEG signals because of their ability to preserve the time-frequency structure of EEG signals and promising classification outcomes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zxp发布了新的文献求助10
刚刚
大古关注了科研通微信公众号
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
JamesPei应助LeslieHu采纳,获得10
2秒前
隐形曼青应助林深沉采纳,获得10
2秒前
搜集达人应助tianmafei采纳,获得10
2秒前
大个应助美年达采纳,获得10
2秒前
3秒前
朴素代秋完成签到,获得积分10
3秒前
杜薇薇发布了新的文献求助10
4秒前
咖啡豆发布了新的文献求助10
4秒前
高兴溪流完成签到,获得积分20
5秒前
5秒前
5秒前
ymjssg应助lee采纳,获得10
5秒前
帅气的机器猫完成签到 ,获得积分10
5秒前
希望天下0贩的0应助浮浮采纳,获得10
5秒前
wzt发布了新的文献求助10
6秒前
6秒前
稻香茶煦发布了新的文献求助10
6秒前
大个应助doing采纳,获得10
6秒前
7秒前
张天宇完成签到,获得积分10
7秒前
7秒前
7秒前
共享精神应助YingyingFan采纳,获得10
8秒前
crazy完成签到,获得积分10
8秒前
高兴溪流发布了新的文献求助10
8秒前
yzr发布了新的文献求助10
8秒前
111完成签到,获得积分10
8秒前
yike关注了科研通微信公众号
8秒前
8秒前
自觉从筠发布了新的文献求助10
9秒前
玛卡巴卡完成签到,获得积分10
9秒前
上官若男应助子姜采纳,获得10
9秒前
LittleWang完成签到,获得积分10
9秒前
10秒前
科研通AI2S应助积雨云采纳,获得10
10秒前
chall应助nullchuang采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624997
求助须知:如何正确求助?哪些是违规求助? 4710900
关于积分的说明 14952616
捐赠科研通 4778944
什么是DOI,文献DOI怎么找? 2553493
邀请新用户注册赠送积分活动 1515444
关于科研通互助平台的介绍 1475731