Exploiting pretrained CNN models for the development of an EEG-based robust BCI framework

脑-机接口 计算机科学 脑电图 运动表象 人工智能 模式识别(心理学) 卷积神经网络 特征提取 主成分分析 特征(语言学) 语音识别 机器学习 神经科学 心理学 语言学 哲学
作者
Muhammad Tariq Sadiq,Muhammad Zulkifal Aziz,Ahmad Almogren,Adnan Yousaf,Siuly Siuly,Ateeq Ur Rehman
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:143: 105242-105242 被引量:76
标识
DOI:10.1016/j.compbiomed.2022.105242
摘要

Identifying motor and mental imagery electroencephalography (EEG) signals is imperative to realizing automated, robust brain-computer interface (BCI) systems. In the present study, we proposed a pretrained convolutional neural network (CNN)-based new automated framework feasible for robust BCI systems with small and ample samples of motor and mental imagery EEG training data. The framework is explored by investigating the implications of different limiting factors, such as learning rates and optimizers, processed versus unprocessed scalograms, and features derived from untuned pretrained models in small, medium, and large pretrained CNN models. The experiments were performed on three public datasets obtained from BCI Competition III. The datasets were denoised with multiscale principal component analysis, and time-frequency scalograms were obtained by employing a continuous wavelet transform. The scalograms were fed into several variants of ten pretrained models for feature extraction and identification of different EEG tasks. The experimental results showed that ShuffleNet yielded the maximum average classification accuracy of 99.52% using an RMSProp optimizer with a learning rate of 0.000 1. It was observed that low learning rates converge to more optimal performances compared to high learning rates. Moreover, noisy scalograms and features extracted from untuned networks resulted in slightly lower performance than denoised scalograms and tuned networks, respectively. The overall results suggest that pretrained models are robust when identifying EEG signals because of their ability to preserve the time-frequency structure of EEG signals and promising classification outcomes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助啦啦啦啦啦采纳,获得10
1秒前
2秒前
加厚加大发布了新的文献求助10
2秒前
vhjino完成签到,获得积分10
2秒前
白枫完成签到 ,获得积分10
3秒前
4秒前
wuyou发布了新的文献求助10
5秒前
葛稀发布了新的文献求助10
5秒前
微笑的小刺猬完成签到,获得积分20
5秒前
赘婿应助难过的谷芹采纳,获得10
6秒前
7秒前
Akim应助tlotw41采纳,获得10
7秒前
蛋卷发布了新的文献求助10
8秒前
8秒前
long发布了新的文献求助10
8秒前
共享精神应助沉默的金鱼采纳,获得10
9秒前
tjbdlyh完成签到 ,获得积分10
9秒前
xo80完成签到 ,获得积分10
9秒前
9秒前
mu发布了新的文献求助10
9秒前
赘婿应助学术裁缝采纳,获得10
12秒前
12秒前
12秒前
13秒前
14秒前
14秒前
香香香发布了新的文献求助10
14秒前
武林小鸟完成签到,获得积分10
15秒前
Owen应助蛋卷采纳,获得10
15秒前
祝顺遂发布了新的文献求助10
16秒前
16秒前
0701完成签到 ,获得积分10
16秒前
许许完成签到,获得积分10
17秒前
Ternura完成签到,获得积分20
17秒前
17秒前
一叶扁舟完成签到 ,获得积分10
17秒前
xx发布了新的文献求助10
18秒前
岁月如酒完成签到,获得积分10
19秒前
啊擦删除发布了新的文献求助10
19秒前
孙煜发布了新的文献求助30
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5594261
求助须知:如何正确求助?哪些是违规求助? 4679954
关于积分的说明 14812329
捐赠科研通 4646568
什么是DOI,文献DOI怎么找? 2534851
邀请新用户注册赠送积分活动 1502822
关于科研通互助平台的介绍 1469497