Exploiting pretrained CNN models for the development of an EEG-based robust BCI framework

脑-机接口 计算机科学 脑电图 运动表象 人工智能 模式识别(心理学) 卷积神经网络 特征提取 主成分分析 特征(语言学) 语音识别 机器学习 神经科学 心理学 语言学 哲学
作者
Muhammad Tariq Sadiq,Muhammad Zulkifal Aziz,Ahmad Almogren,Adnan Yousaf,Siuly Siuly,Ateeq Ur Rehman
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:143: 105242-105242 被引量:76
标识
DOI:10.1016/j.compbiomed.2022.105242
摘要

Identifying motor and mental imagery electroencephalography (EEG) signals is imperative to realizing automated, robust brain-computer interface (BCI) systems. In the present study, we proposed a pretrained convolutional neural network (CNN)-based new automated framework feasible for robust BCI systems with small and ample samples of motor and mental imagery EEG training data. The framework is explored by investigating the implications of different limiting factors, such as learning rates and optimizers, processed versus unprocessed scalograms, and features derived from untuned pretrained models in small, medium, and large pretrained CNN models. The experiments were performed on three public datasets obtained from BCI Competition III. The datasets were denoised with multiscale principal component analysis, and time-frequency scalograms were obtained by employing a continuous wavelet transform. The scalograms were fed into several variants of ten pretrained models for feature extraction and identification of different EEG tasks. The experimental results showed that ShuffleNet yielded the maximum average classification accuracy of 99.52% using an RMSProp optimizer with a learning rate of 0.000 1. It was observed that low learning rates converge to more optimal performances compared to high learning rates. Moreover, noisy scalograms and features extracted from untuned networks resulted in slightly lower performance than denoised scalograms and tuned networks, respectively. The overall results suggest that pretrained models are robust when identifying EEG signals because of their ability to preserve the time-frequency structure of EEG signals and promising classification outcomes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助hsa_ID采纳,获得10
2秒前
干净的南风应助CPPPPPP3采纳,获得10
2秒前
传统的砖家完成签到,获得积分20
4秒前
ppp发布了新的文献求助10
4秒前
桐桐应助漂亮乐蓉采纳,获得10
5秒前
6秒前
全宝林完成签到,获得积分10
6秒前
SICHEN发布了新的文献求助10
7秒前
iori完成签到,获得积分10
7秒前
英俊的铭应助聪慧的凝海采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
铃溪完成签到,获得积分10
7秒前
刘文赋完成签到,获得积分10
7秒前
9秒前
10秒前
Sau1发布了新的文献求助10
11秒前
扭扭车完成签到,获得积分10
11秒前
clone2012完成签到,获得积分10
11秒前
清秀的鲂完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
SciGPT应助美满的大象采纳,获得10
13秒前
14秒前
14秒前
14秒前
领导范儿应助科研通管家采纳,获得10
14秒前
14秒前
情怀应助科研通管家采纳,获得10
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
14秒前
15秒前
JamesPei应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
Akim应助科研通管家采纳,获得10
15秒前
华仔应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
15秒前
科研通AI6应助YaoHui采纳,获得10
16秒前
可爱的函函应助任性依萱采纳,获得10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660142
求助须知:如何正确求助?哪些是违规求助? 4831530
关于积分的说明 15089282
捐赠科研通 4818721
什么是DOI,文献DOI怎么找? 2578762
邀请新用户注册赠送积分活动 1533370
关于科研通互助平台的介绍 1492124