亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Exploiting pretrained CNN models for the development of an EEG-based robust BCI framework

脑-机接口 计算机科学 脑电图 运动表象 人工智能 模式识别(心理学) 卷积神经网络 特征提取 主成分分析 特征(语言学) 语音识别 机器学习 神经科学 心理学 语言学 哲学
作者
Muhammad Tariq Sadiq,Muhammad Zulkifal Aziz,Ahmad Almogren,Adnan Yousaf,Siuly Siuly,Ateeq Ur Rehman
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:143: 105242-105242 被引量:76
标识
DOI:10.1016/j.compbiomed.2022.105242
摘要

Identifying motor and mental imagery electroencephalography (EEG) signals is imperative to realizing automated, robust brain-computer interface (BCI) systems. In the present study, we proposed a pretrained convolutional neural network (CNN)-based new automated framework feasible for robust BCI systems with small and ample samples of motor and mental imagery EEG training data. The framework is explored by investigating the implications of different limiting factors, such as learning rates and optimizers, processed versus unprocessed scalograms, and features derived from untuned pretrained models in small, medium, and large pretrained CNN models. The experiments were performed on three public datasets obtained from BCI Competition III. The datasets were denoised with multiscale principal component analysis, and time-frequency scalograms were obtained by employing a continuous wavelet transform. The scalograms were fed into several variants of ten pretrained models for feature extraction and identification of different EEG tasks. The experimental results showed that ShuffleNet yielded the maximum average classification accuracy of 99.52% using an RMSProp optimizer with a learning rate of 0.000 1. It was observed that low learning rates converge to more optimal performances compared to high learning rates. Moreover, noisy scalograms and features extracted from untuned networks resulted in slightly lower performance than denoised scalograms and tuned networks, respectively. The overall results suggest that pretrained models are robust when identifying EEG signals because of their ability to preserve the time-frequency structure of EEG signals and promising classification outcomes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沫雨应助zznzn采纳,获得10
13秒前
一只鲨呱完成签到 ,获得积分10
20秒前
21秒前
21秒前
36秒前
40秒前
在水一方应助wang采纳,获得10
43秒前
轻松听双发布了新的文献求助10
45秒前
57秒前
从容芮完成签到,获得积分0
1分钟前
量子星尘发布了新的文献求助100
1分钟前
1分钟前
1分钟前
AZN完成签到,获得积分10
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得20
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
小二郎应助风中的雪采纳,获得10
1分钟前
mingli2025发布了新的文献求助10
1分钟前
1分钟前
2分钟前
crazydick发布了新的文献求助10
2分钟前
情怀应助甜青提采纳,获得10
2分钟前
2分钟前
刺1656发布了新的文献求助10
2分钟前
2分钟前
甜青提发布了新的文献求助10
2分钟前
缥缈以珊完成签到,获得积分10
2分钟前
2分钟前
2分钟前
唐唐完成签到 ,获得积分10
3分钟前
3分钟前
qiii完成签到,获得积分10
3分钟前
qiii发布了新的文献求助30
3分钟前
隐形曼青应助Huck采纳,获得30
3分钟前
Marciu33完成签到,获得积分10
3分钟前
Huck完成签到,获得积分10
3分钟前
3分钟前
3分钟前
Huck发布了新的文献求助30
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
Exosomes Pipeline Insight, 2025 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671189
求助须知:如何正确求助?哪些是违规求助? 4911434
关于积分的说明 15134190
捐赠科研通 4829942
什么是DOI,文献DOI怎么找? 2586543
邀请新用户注册赠送积分活动 1540204
关于科研通互助平台的介绍 1498392