Phosphate removal from actual wastewater via La(OH)3-C3N4 adsorption: Performance, mechanisms and applicability

吸附 磷酸盐 Zeta电位 废水 水溶液 化学 化学工程 复合数 傅里叶变换红外光谱 核化学 材料科学 纳米颗粒 环境工程 有机化学 复合材料 工程类
作者
Xuejie Yin,Xin Li,Evangelos Petropoulos,Yanfang Feng,Bei Yang,Lihong Xue,Linzhang Yang,Shiying He
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:814: 152791-152791 被引量:46
标识
DOI:10.1016/j.scitotenv.2021.152791
摘要

In this study, La(OH)3 nanoparticles were immobilized on C3N4 to effectively restrict their aggregation and subsequently enhance the La utilization efficiency to promote phosphate adsorption. The prepared La(OH)3-C3N4 nanocomposite was characterized by SEM, XRD, FTIR, XPS, BET and Zeta potential analysis. Batch and continuously-fed (fixed-bed column) experiments to assess the adsorption performance of La(OH)3-C3N4 showed that the composite exhibits superior utilization efficiency, resulting to relatively quick adsorption with a short equilibrium time of 30 min. The theoretical maximum P adsorption capacity reached the 148.35 mg·g-1, efficiency that remained unaffected by the anions and HA present. The adsorption mechanism showed stability in a wide pH range (4.0-11.0) and is considered effective even after extensive use (five-cycles). The dynamics of the adsorption capacity and the half-penetration time values were estimated by 'Thomas' and 'Yoon-Nelson' models showed that are better represented from the experimental values obtained from the fixed-bed column trial. The adsorption mechanisms were attributed to surface precipitation, electrostatic attraction, and inner-sphere complexation via ligand exchange. Furthermore, La(OH)3-C3N4 demonstrated high efficiency in scavenging phosphate from both diluted and concentrated wastewater (natural pond and swine wastewater respectively). The above confirm that La(OH)3-C3N4 is a promising composite material for phosphate management in aqueous environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yueshao完成签到,获得积分10
2秒前
Ray发布了新的文献求助10
3秒前
丰富的乐儿完成签到,获得积分10
3秒前
CipherSage应助晨阳采纳,获得10
4秒前
zz完成签到,获得积分10
6秒前
11秒前
Lico完成签到,获得积分10
13秒前
寒冷威完成签到,获得积分10
19秒前
20秒前
21秒前
木沐完成签到,获得积分10
23秒前
静夜谧思完成签到,获得积分10
23秒前
xxfsx应助liz采纳,获得40
24秒前
唠叨的胡萝卜完成签到,获得积分10
24秒前
Lingzi发布了新的文献求助10
26秒前
蠢萌的小哈完成签到,获得积分10
26秒前
26秒前
sanmu发布了新的文献求助10
26秒前
晨阳发布了新的文献求助10
26秒前
27秒前
克里斯蒂娜完成签到,获得积分10
28秒前
qiuwuji完成签到,获得积分10
28秒前
安静季节完成签到,获得积分10
29秒前
1xx完成签到 ,获得积分10
30秒前
还不错发布了新的文献求助10
31秒前
晨阳完成签到,获得积分10
32秒前
32秒前
sanmu完成签到,获得积分10
35秒前
song完成签到 ,获得积分10
35秒前
35秒前
还不错完成签到,获得积分10
36秒前
自信的海瑶完成签到 ,获得积分10
37秒前
白白完成签到,获得积分20
37秒前
Junru完成签到,获得积分10
38秒前
38秒前
changping应助拾肆采纳,获得10
38秒前
芝士发布了新的文献求助10
41秒前
念柏完成签到,获得积分10
43秒前
dotty发布了新的文献求助10
44秒前
Ranqi完成签到,获得积分10
45秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5295962
求助须知:如何正确求助?哪些是违规求助? 4445317
关于积分的说明 13835911
捐赠科研通 4329946
什么是DOI,文献DOI怎么找? 2376831
邀请新用户注册赠送积分活动 1372199
关于科研通互助平台的介绍 1337534