Identification method of vegetable diseases based on transfer learning and attention mechanism

鉴定(生物学) 学习迁移 人工智能 卷积神经网络 计算机科学 机器学习 模式识别(心理学) 生物 植物
作者
Xue Tong Zhao,Kaiyu Li,Yunxia Li,Juncheng Ma,Lingxian Zhang
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:193: 106703-106703 被引量:51
标识
DOI:10.1016/j.compag.2022.106703
摘要

Artificial Intelligence for disease identification is currently the focus of great research interest. Nonetheless, the approach has some problems, for example, identification takes a long time, has low accuracy, and is often limited to a single disease type. Here, we aimed to identify tomato powdery mildew, leaf mold and cucumber downy mildew against simple and complex backgrounds. We developed a vegetable disease identification model, DTL-SE-ResNet50, optimized by SENet and pre-trained by ImageNet to form a new model, SE-ResNet50. The SE-ResNet50 model was trained with the AI Challenger 2018 public database to obtain a new weight. The SE-ResNet50 model with the new weight was then trained by dual transfer learning with a self-built database to create the DTL-SE-ResNet50 model for the identification of vegetable diseases. The model was compared with convolutional neural networks EfficientNet, AlexNet, VGG19, and Inception V3. The experimental results showed that with the same experimental conditions, the identification precision of the new model reached 97.24%, and processing of a single image required 0.13 s. Compared with DTL-CBAM-ResNet50 and DTL-SA-ResNet50, three models has almost the same precision, but time consumption of DTL-SE-ResNet50 was 0.02 s higher than that of DTL-CBAM-ResNet50. Although the time consumption of DTL-SA-ResNet50 was 0.02 s higher than the proposed model, the precision was lower. At the same time, compared with the dual transfer learning model, the model’s precision was 4.1% higher, and the processing of a single image was 0.06 s shorter. Compared with convolutional neural networks, the precision of DTL-SE-ResNet50 was 3.19% higher than the best result, the time consumption of a single image was 0.58 s shorter; Recall and F1 also increased. The method proposed in this paper has high identification precision and short identification time, and it meets the requirements for accurate and rapid identification of vegetable diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
阔达的扬完成签到,获得积分10
刚刚
千空发布了新的文献求助10
刚刚
1秒前
牛姐完成签到,获得积分10
2秒前
李小喵完成签到,获得积分10
2秒前
2秒前
曾珍完成签到 ,获得积分10
3秒前
wshwx完成签到,获得积分10
3秒前
阳光以南完成签到,获得积分10
3秒前
Ridley发布了新的文献求助10
3秒前
Leety完成签到,获得积分10
3秒前
3秒前
高手中的糕手完成签到,获得积分10
4秒前
王花花发布了新的文献求助10
4秒前
yuu发布了新的文献求助20
5秒前
ztt发布了新的文献求助10
5秒前
5秒前
樱子发布了新的文献求助10
5秒前
旺仔完成签到 ,获得积分10
5秒前
ffw1完成签到,获得积分10
5秒前
5秒前
6秒前
Superg发布了新的文献求助10
7秒前
LDDD发布了新的文献求助10
7秒前
酷波er应助阳光以南采纳,获得10
7秒前
小酥饼完成签到,获得积分10
8秒前
唐水之发布了新的文献求助10
8秒前
善良身影完成签到,获得积分10
9秒前
不回首发布了新的文献求助10
9秒前
10秒前
浮雨微清完成签到,获得积分10
10秒前
水煮牛肉完成签到,获得积分10
11秒前
asdasd完成签到 ,获得积分10
11秒前
所所应助Elec采纳,获得10
11秒前
11秒前
zhangyujin完成签到,获得积分10
11秒前
冷水发布了新的文献求助10
11秒前
12秒前
烟花应助eric采纳,获得30
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950265
求助须知:如何正确求助?哪些是违规求助? 3495724
关于积分的说明 11078490
捐赠科研通 3226143
什么是DOI,文献DOI怎么找? 1783626
邀请新用户注册赠送积分活动 867725
科研通“疑难数据库(出版商)”最低求助积分说明 800904