青藤碱
药理学
关节炎
腺苷A2A受体
兴奋剂
肿瘤坏死因子α
医学
内科学
炎症
内分泌学
类风湿性关节炎
受体
腺苷
免疫学
化学
腺苷受体
作者
Lang Yi,Junyu Ke,Jiayan Liu,Huili Lai,Yanjun Lv,Chong Peng,Yingkun Zhi,Qun Du,Liang Liu,Peixun Wang,Hua Zhou,Yan Dong
标识
DOI:10.1002/jlb.3ma0121-024rrrr
摘要
Sinomenine (SIN) is a clinical drug for treating rheumatoid arthritis (RA) in China. Our previous study found SIN inhibited inflammation via alpha7 nicotinic acetylcholine receptor (α7nAChR) in macrophages in vitro. Adenosine receptor A2A has anti-inflammatory and immunosuppressive function. However, the mechanisms of SIN acting on α7nAChR and the effect on adenosine A2A receptor (A2A R) in RA are not clear. In the present study, the effects of SIN on adjuvant-induced-arthritis (AIA) rats in vivo and on fibroblast-like synoviocytes (FLSs) in vitro were investigated. Indomethacin (Indo) and methotrexate (MTX), the clinical anti-arthritis drugs, were used as controls. Nicotine (Nic), a specific agonist of α7nAChR, was used as a control for targeting α7nAChR. Alpha-bungarotoxin (α-BTX), the antagonist of α7nAChR or small interference RNA (siRNA) was used to block or knock down α7nAChR. Results showed that SIN decreased arthritis index, hind paw volume, erythrocyte sedimentation (ESR) and serum TNF-α in AIA rats, and α-BTX attenuated the earlier-mentioned effects of SIN and Nic, but not Indo and MTX. The expressions of A2A R in synovium declined in AIA rats, but remarkably increased after the intervention of SIN. The expression of A2A R decreased by LPS or TNF-α, but increased by SIN; cAMP also increased by SIN in FLSs in vitro. SIN inhibited the expression of MCP-1, IL-6, and vascular endothelial growth factor in LPS-induced FLSs. SIN inhibited the activation of NF-κB. Meanwhile, α-BTX or α7nAChR siRNA blocked the earlier-mentioned effects of SIN in FLSs. Results suggested the expressions of A2A R in synovium and FLSs are negatively correlated with the arthritis progression of AIA rats and the activation of FLSs. SIN increases A2A R and inhibits the activation of NF-κB pathway via α7nAChR in AIA rats and FLSs.
科研通智能强力驱动
Strongly Powered by AbleSci AI