239 Using real-world data to predict pain recording and pain severity in the pre-hospital emergency setting – an observational analysis of 212,401 episodes of care

医学 急诊科 观察研究 回顾性队列研究 入射(几何) 急诊医学 格拉斯哥昏迷指数 物理疗法 内科学 外科 精神科 光学 物理
作者
R Quinn,S Masterson,D Willis,D Hennelly,Conor Deasy,C O’Donnell
出处
期刊:Abstracts
标识
DOI:10.1136/bmjopen-2022-ems.8
摘要

Background

Previous studies in the prehospital setting have reported wide variation in the incidence and severity of pain, and that documentation of pain scores is poor. The aim of our study was to investigate and describe the incidence and severity of patient-reported pain that is recorded by pre-hospital emergency care patients in Ireland.

Method

We used data from our electronic patient care record (ePCR) repository to perform this retrospective cohort study of all emergency care episodes recorded by National Ambulance Service practitioners during 2020. Descriptive analysis of patient and care characteristics and regression analyses for the outcomes pain recorded and severity of pain were performed.

Results

Of the 212,401 patient care episodes included, 138,195 (65%) included a pain score (75,445 = no pain; 18,378 = mild pain; 21,451 = moderate pain; 22,921 = severe pain). The likelihood of pain being recorded was most strongly associated with the Glasgow Coma Score, working diagnosis, call location, and patient age. The variables showing strongest association with pain severity were transport outcome, working diagnosis, and patient age. Sensitivity analysis confirmed that all regression models performed better than chance, but that all models were relatively weak at predicting the outcomes.

Conclusion

Using a large real-world dataset, we have demonstrated patient and care episode characteristics that are associated with recording and severity of self-reported pain. We have identified actionable improvements that will strengthen the prediction accuracy of routinely collected data and ultimately improve pain management for our patients.

Conflict of interest

None to declare.

Funding

No specific funding received or sought for this study.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NIJJJJJIA完成签到 ,获得积分10
1秒前
江南之南发布了新的文献求助10
2秒前
上官若男应助li采纳,获得10
2秒前
ccm应助YQQ采纳,获得10
2秒前
3秒前
Jasper应助Moriaty采纳,获得10
3秒前
4秒前
水墨橙子发布了新的文献求助10
4秒前
swh发布了新的文献求助10
4秒前
健康的老六完成签到,获得积分10
5秒前
Lingo完成签到,获得积分10
6秒前
顺心含蕾完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
tangrulong完成签到,获得积分10
7秒前
西岭发布了新的文献求助10
7秒前
8秒前
11111111发布了新的文献求助10
8秒前
8秒前
芷莯发布了新的文献求助10
9秒前
zzzzyh完成签到 ,获得积分10
9秒前
9秒前
畅快傲松完成签到,获得积分10
9秒前
10秒前
晴天发布了新的文献求助10
10秒前
11秒前
xiaoan发布了新的文献求助10
11秒前
11秒前
Lucas应助哈哈哈采纳,获得10
11秒前
小二郎应助威武忆山采纳,获得10
12秒前
Daisy发布了新的文献求助10
12秒前
tlotw41发布了新的文献求助10
12秒前
科研通AI6应助swh采纳,获得10
13秒前
sola发布了新的文献求助10
13秒前
13秒前
陈思远完成签到,获得积分10
13秒前
14秒前
胡树完成签到,获得积分10
14秒前
南城忆潇湘完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5520926
求助须知:如何正确求助?哪些是违规求助? 4612521
关于积分的说明 14533938
捐赠科研通 4550069
什么是DOI,文献DOI怎么找? 2493369
邀请新用户注册赠送积分活动 1474567
关于科研通互助平台的介绍 1446106