239 Using real-world data to predict pain recording and pain severity in the pre-hospital emergency setting – an observational analysis of 212,401 episodes of care

医学 急诊科 观察研究 回顾性队列研究 入射(几何) 急诊医学 格拉斯哥昏迷指数 物理疗法 内科学 外科 精神科 光学 物理
作者
R Quinn,S Masterson,D Willis,D Hennelly,Conor Deasy,C O’Donnell
出处
期刊:Abstracts
标识
DOI:10.1136/bmjopen-2022-ems.8
摘要

Background

Previous studies in the prehospital setting have reported wide variation in the incidence and severity of pain, and that documentation of pain scores is poor. The aim of our study was to investigate and describe the incidence and severity of patient-reported pain that is recorded by pre-hospital emergency care patients in Ireland.

Method

We used data from our electronic patient care record (ePCR) repository to perform this retrospective cohort study of all emergency care episodes recorded by National Ambulance Service practitioners during 2020. Descriptive analysis of patient and care characteristics and regression analyses for the outcomes pain recorded and severity of pain were performed.

Results

Of the 212,401 patient care episodes included, 138,195 (65%) included a pain score (75,445 = no pain; 18,378 = mild pain; 21,451 = moderate pain; 22,921 = severe pain). The likelihood of pain being recorded was most strongly associated with the Glasgow Coma Score, working diagnosis, call location, and patient age. The variables showing strongest association with pain severity were transport outcome, working diagnosis, and patient age. Sensitivity analysis confirmed that all regression models performed better than chance, but that all models were relatively weak at predicting the outcomes.

Conclusion

Using a large real-world dataset, we have demonstrated patient and care episode characteristics that are associated with recording and severity of self-reported pain. We have identified actionable improvements that will strengthen the prediction accuracy of routinely collected data and ultimately improve pain management for our patients.

Conflict of interest

None to declare.

Funding

No specific funding received or sought for this study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
happyalice发布了新的文献求助10
刚刚
BICEIT发布了新的文献求助10
1秒前
snsut发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
4秒前
dudu发布了新的文献求助10
4秒前
4秒前
nanlinhua发布了新的文献求助10
4秒前
MrCoolWu完成签到,获得积分10
5秒前
斯文败类应助科研通管家采纳,获得10
6秒前
今后应助科研通管家采纳,获得10
6秒前
彭于晏应助科研通管家采纳,获得10
6秒前
汉堡包应助科研通管家采纳,获得10
6秒前
斯文败类应助科研通管家采纳,获得10
6秒前
6秒前
充电宝应助李某采纳,获得10
6秒前
烟花应助科研通管家采纳,获得10
6秒前
深情安青应助科研通管家采纳,获得10
6秒前
赘婿应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
胡广发布了新的文献求助10
7秒前
golf发布了新的文献求助10
7秒前
甜蜜屁池发布了新的文献求助10
8秒前
snsut完成签到,获得积分10
8秒前
8秒前
8秒前
李爱国应助carrier_hc采纳,获得50
9秒前
Lsy完成签到,获得积分10
9秒前
9秒前
10秒前
任性的香烟完成签到,获得积分10
10秒前
刘梦婷发布了新的文献求助10
11秒前
洺全发布了新的文献求助10
13秒前
sheep完成签到 ,获得积分10
13秒前
深情安青应助BICEIT采纳,获得10
13秒前
zhuhaot发布了新的文献求助50
13秒前
Yiwuer完成签到,获得积分10
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958130
求助须知:如何正确求助?哪些是违规求助? 3504312
关于积分的说明 11117892
捐赠科研通 3235623
什么是DOI,文献DOI怎么找? 1788403
邀请新用户注册赠送积分活动 871211
科研通“疑难数据库(出版商)”最低求助积分说明 802547