清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

239 Using real-world data to predict pain recording and pain severity in the pre-hospital emergency setting – an observational analysis of 212,401 episodes of care

医学 急诊科 观察研究 回顾性队列研究 入射(几何) 急诊医学 格拉斯哥昏迷指数 物理疗法 内科学 外科 精神科 光学 物理
作者
R Quinn,S Masterson,D Willis,D Hennelly,Conor Deasy,C O’Donnell
出处
期刊:Abstracts
标识
DOI:10.1136/bmjopen-2022-ems.8
摘要

Background

Previous studies in the prehospital setting have reported wide variation in the incidence and severity of pain, and that documentation of pain scores is poor. The aim of our study was to investigate and describe the incidence and severity of patient-reported pain that is recorded by pre-hospital emergency care patients in Ireland.

Method

We used data from our electronic patient care record (ePCR) repository to perform this retrospective cohort study of all emergency care episodes recorded by National Ambulance Service practitioners during 2020. Descriptive analysis of patient and care characteristics and regression analyses for the outcomes pain recorded and severity of pain were performed.

Results

Of the 212,401 patient care episodes included, 138,195 (65%) included a pain score (75,445 = no pain; 18,378 = mild pain; 21,451 = moderate pain; 22,921 = severe pain). The likelihood of pain being recorded was most strongly associated with the Glasgow Coma Score, working diagnosis, call location, and patient age. The variables showing strongest association with pain severity were transport outcome, working diagnosis, and patient age. Sensitivity analysis confirmed that all regression models performed better than chance, but that all models were relatively weak at predicting the outcomes.

Conclusion

Using a large real-world dataset, we have demonstrated patient and care episode characteristics that are associated with recording and severity of self-reported pain. We have identified actionable improvements that will strengthen the prediction accuracy of routinely collected data and ultimately improve pain management for our patients.

Conflict of interest

None to declare.

Funding

No specific funding received or sought for this study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Puan发布了新的文献求助10
13秒前
maggiexjl完成签到,获得积分10
15秒前
追寻的冬寒完成签到 ,获得积分10
33秒前
传奇3应助科研通管家采纳,获得10
58秒前
申木完成签到 ,获得积分10
1分钟前
阿尔法贝塔完成签到 ,获得积分10
2分钟前
雪花完成签到 ,获得积分10
2分钟前
4分钟前
白华苍松完成签到,获得积分10
4分钟前
白华苍松发布了新的文献求助10
4分钟前
白菜完成签到 ,获得积分10
4分钟前
合适醉蝶完成签到 ,获得积分10
4分钟前
晚意意意意意完成签到 ,获得积分10
4分钟前
无花果应助科研通管家采纳,获得10
4分钟前
xiewuhua完成签到,获得积分10
5分钟前
Yanan完成签到,获得积分10
5分钟前
Richard完成签到 ,获得积分10
6分钟前
ling361完成签到,获得积分10
6分钟前
悠明夜月完成签到 ,获得积分10
6分钟前
Emperor完成签到 ,获得积分0
7分钟前
打打应助科研通管家采纳,获得10
8分钟前
composite66完成签到,获得积分10
9分钟前
沙海沉戈完成签到,获得积分0
10分钟前
huichuanyin完成签到 ,获得积分10
10分钟前
刘天宇完成签到 ,获得积分10
10分钟前
赘婿应助科研通管家采纳,获得10
10分钟前
HaoHao04完成签到 ,获得积分10
11分钟前
study00122完成签到,获得积分10
12分钟前
12分钟前
theo完成签到 ,获得积分10
13分钟前
乐乐应助专注的月亮采纳,获得10
13分钟前
13分钟前
13分钟前
杨天天完成签到 ,获得积分10
14分钟前
Kevin完成签到 ,获得积分10
14分钟前
无敌石墨烯完成签到 ,获得积分10
14分钟前
枫林摇曳完成签到 ,获得积分10
15分钟前
zsmj23完成签到 ,获得积分0
16分钟前
陈槊诸完成签到 ,获得积分10
18分钟前
小蘑菇应助科研通管家采纳,获得10
18分钟前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
encyclopedia of computational mechanics,2 edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3268785
求助须知:如何正确求助?哪些是违规求助? 2908238
关于积分的说明 8344900
捐赠科研通 2578564
什么是DOI,文献DOI怎么找? 1402210
科研通“疑难数据库(出版商)”最低求助积分说明 655352
邀请新用户注册赠送积分活动 634490