Letter to the editor: Compromised hepatic mitochondrial fatty acid oxidation and reduced markers of mitochondrial turnover in human NAFLD

粒体自噬 线粒体生物发生 线粒体ROS 活性氧 细胞生物学 生物发生 超氧化物 β氧化 生物 线粒体 氧化应激 化学 生物化学 脂肪酸 自噬 细胞凋亡 基因
作者
Yuan Qin,Anqi Li,Bilin Liu,Meng Gao,Guohua Gong
出处
期刊:Hepatology [Lippincott Williams & Wilkins]
卷期号:76 (5): E104-E105
标识
DOI:10.1002/hep.32551
摘要

To the editor, We read the recent study by Moore et al.[1] reporting that compromised hepatic fatty acid oxidation (FAO) and mitochondrial turnover are closely related to NAFLD severity in obese patients. The article greatly increases our understanding of the role of mitochondria in the pathogenesis of NAFLD, but we still had some concerns about the results that require attention. First, mitochondrial homeostasis, a prerequisite for mitochondrial functions, is majorly orchestrated by mitochondrial biogenesis and mitophagy. The perturbation between mitochondrial biogenesis and mitophagy causes the dysfunction of the mitochondria pool, which results in less ATP production and more reactive oxygen species (ROS) generation.[2] Hepatic mitochondrial biogenesis, mitophagy, and dynamics of patients with B‐NASH and D‐NASH were impaired in the current study, which further contribute to round, swollen, hypodense mitochondria with loss of cristae. The declined ATP production and accumulated ROS generation are a sure result. However, the protein content of hepatic OXPHOS complexes did not differ across groups. At the same time, the whole‐liver antioxidant defense system markers of protein content are not declined. Altogether, it is hard to explain that the mitochondrial ATP and ROS generation were significantly changed. It is well known that mitochondrial superoxide generated from the electron leak from Complexes I and III of electron transport chain during ATP production, and dysfunctional complex I and III trigger more superoxide generation.[3] We think that it is necessary to provide evidence of complex I and III activity not only for the ROS accumulation but also for the less energetic metabolism. Second, peroxisome proliferator‐activated receptor‐gamma coactivator (PGC‐1α), a co‐activator of peroxisome proliferator‐activated receptor gamma (PPARγ), is considered the master transcriptional regulator of mitochondrial biogenesis, but it is not enough to indicate the mitochondrial biogenesis by itself. PGC‐1a interacts with different transcription factors participating in multiple cellular activities including mitochondrial biogenesis, adaptive thermogenesis, angiogenesis, regulation of tricarboxylic acid cycle, gluconeogenesis, FAO, and oxidative phosphorylation.[4] Therefore, the dramatic reduction of mitochondrial biogenesis needs more evidence to confirm. Mitochondrial transcription factor A and mitochondrial DNA copy represent the direct mitochondrial biogenesis and need to be further determined. It should be noticed that deficient mitophagy might lead to damaged mitochondria accumulation, contributing to mDNA copy increase. Finally, mitophagy, a specific autophagic elimination of mitochondria, shares the most of molecular mechanic machinery with autophagy; thus, the interpretation of mitophagy needs more careful review. However, the study only detected the protein content of BCL2/adenovirus E1B19 kDa‐interacting protein 3 (BINP3), Phosphatase and tensin homolog (PTEN)‐induced kinase 1 (PINK1), and Parkinson's disease protein (PARKIN) of hepatic mitochondria. In actuality, the accumulated P62 and LC3 on mitochondria are more important to mitophagic flux.[5] We recommend that the authors further detect the P62 and LC3 of hepatic mitochondria. Another question to be answered is why a low level of ethanol is a mitochondrial biogenesis activator. In conclusion, we agree with the investigators’ conclusion that compromised hepatic FAO and dysfunctional mitochondria are closely related to NAFLD severity in obese patients. However, further studies are required to determine the mitochondrial biogenesis, the mitophagy, and the Complexes’ activity alteration in obese patients with NAFLD. CONFLICT OF INTEREST Nothing to report.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浅笑发布了新的文献求助10
刚刚
Chelry发布了新的文献求助10
刚刚
吃饱饱完成签到,获得积分10
1秒前
cllg完成签到 ,获得积分10
1秒前
风从虎关注了科研通微信公众号
3秒前
耶律遗风发布了新的文献求助10
3秒前
4秒前
CodeCraft应助boyue采纳,获得10
4秒前
5秒前
哈哈哈发布了新的文献求助10
7秒前
9秒前
天天快乐应助沉静的靖巧采纳,获得10
9秒前
9秒前
ljw发布了新的文献求助10
9秒前
11秒前
NANA1216完成签到,获得积分10
12秒前
喂_你好完成签到,获得积分10
12秒前
胡桃完成签到 ,获得积分10
12秒前
斯文败类应助跳跃的翼采纳,获得10
12秒前
12秒前
12秒前
111发布了新的文献求助10
12秒前
13秒前
科目三应助彗星入梦采纳,获得10
13秒前
量子星尘发布了新的文献求助10
13秒前
不喝奶茶发布了新的文献求助10
14秒前
JAYZHANG完成签到 ,获得积分10
14秒前
14秒前
weiyu发布了新的文献求助10
14秒前
14秒前
ethan2801完成签到,获得积分10
15秒前
16秒前
清脆香萱发布了新的文献求助30
17秒前
含糊的雪冥完成签到,获得积分10
17秒前
17秒前
Biohacking发布了新的文献求助10
18秒前
浅笑完成签到,获得积分10
18秒前
碧蓝的幻梦完成签到,获得积分10
18秒前
18秒前
哈哈哈完成签到 ,获得积分20
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958245
求助须知:如何正确求助?哪些是违规求助? 3504421
关于积分的说明 11118358
捐赠科研通 3235721
什么是DOI,文献DOI怎么找? 1788421
邀请新用户注册赠送积分活动 871211
科研通“疑难数据库(出版商)”最低求助积分说明 802582