Letter to the editor: Compromised hepatic mitochondrial fatty acid oxidation and reduced markers of mitochondrial turnover in human NAFLD

粒体自噬 线粒体生物发生 线粒体ROS 活性氧 细胞生物学 生物发生 超氧化物 β氧化 生物 线粒体 氧化应激 化学 生物化学 脂肪酸 自噬 细胞凋亡 基因
作者
Yuan Qin,Anqi Li,Bilin Liu,Meng Gao,Guohua Gong
出处
期刊:Hepatology [Wiley]
卷期号:76 (5): E104-E105
标识
DOI:10.1002/hep.32551
摘要

To the editor, We read the recent study by Moore et al.[1] reporting that compromised hepatic fatty acid oxidation (FAO) and mitochondrial turnover are closely related to NAFLD severity in obese patients. The article greatly increases our understanding of the role of mitochondria in the pathogenesis of NAFLD, but we still had some concerns about the results that require attention. First, mitochondrial homeostasis, a prerequisite for mitochondrial functions, is majorly orchestrated by mitochondrial biogenesis and mitophagy. The perturbation between mitochondrial biogenesis and mitophagy causes the dysfunction of the mitochondria pool, which results in less ATP production and more reactive oxygen species (ROS) generation.[2] Hepatic mitochondrial biogenesis, mitophagy, and dynamics of patients with B‐NASH and D‐NASH were impaired in the current study, which further contribute to round, swollen, hypodense mitochondria with loss of cristae. The declined ATP production and accumulated ROS generation are a sure result. However, the protein content of hepatic OXPHOS complexes did not differ across groups. At the same time, the whole‐liver antioxidant defense system markers of protein content are not declined. Altogether, it is hard to explain that the mitochondrial ATP and ROS generation were significantly changed. It is well known that mitochondrial superoxide generated from the electron leak from Complexes I and III of electron transport chain during ATP production, and dysfunctional complex I and III trigger more superoxide generation.[3] We think that it is necessary to provide evidence of complex I and III activity not only for the ROS accumulation but also for the less energetic metabolism. Second, peroxisome proliferator‐activated receptor‐gamma coactivator (PGC‐1α), a co‐activator of peroxisome proliferator‐activated receptor gamma (PPARγ), is considered the master transcriptional regulator of mitochondrial biogenesis, but it is not enough to indicate the mitochondrial biogenesis by itself. PGC‐1a interacts with different transcription factors participating in multiple cellular activities including mitochondrial biogenesis, adaptive thermogenesis, angiogenesis, regulation of tricarboxylic acid cycle, gluconeogenesis, FAO, and oxidative phosphorylation.[4] Therefore, the dramatic reduction of mitochondrial biogenesis needs more evidence to confirm. Mitochondrial transcription factor A and mitochondrial DNA copy represent the direct mitochondrial biogenesis and need to be further determined. It should be noticed that deficient mitophagy might lead to damaged mitochondria accumulation, contributing to mDNA copy increase. Finally, mitophagy, a specific autophagic elimination of mitochondria, shares the most of molecular mechanic machinery with autophagy; thus, the interpretation of mitophagy needs more careful review. However, the study only detected the protein content of BCL2/adenovirus E1B19 kDa‐interacting protein 3 (BINP3), Phosphatase and tensin homolog (PTEN)‐induced kinase 1 (PINK1), and Parkinson's disease protein (PARKIN) of hepatic mitochondria. In actuality, the accumulated P62 and LC3 on mitochondria are more important to mitophagic flux.[5] We recommend that the authors further detect the P62 and LC3 of hepatic mitochondria. Another question to be answered is why a low level of ethanol is a mitochondrial biogenesis activator. In conclusion, we agree with the investigators’ conclusion that compromised hepatic FAO and dysfunctional mitochondria are closely related to NAFLD severity in obese patients. However, further studies are required to determine the mitochondrial biogenesis, the mitophagy, and the Complexes’ activity alteration in obese patients with NAFLD. CONFLICT OF INTEREST Nothing to report.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
材小料发布了新的文献求助10
刚刚
ChenXY完成签到,获得积分10
刚刚
halo发布了新的文献求助10
1秒前
lst完成签到,获得积分10
2秒前
科研通AI2S应助kangk采纳,获得10
3秒前
浮游应助空明流毓采纳,获得10
5秒前
6秒前
YUESIYA发布了新的文献求助30
7秒前
寒冷的奇异果完成签到,获得积分10
7秒前
spc68应助早安采纳,获得10
11秒前
复成完成签到 ,获得积分10
13秒前
光亮妙之完成签到,获得积分10
13秒前
dd发布了新的文献求助30
13秒前
整齐半青完成签到 ,获得积分10
13秒前
你好完成签到,获得积分10
14秒前
chenanqi完成签到,获得积分10
14秒前
15秒前
yfn完成签到,获得积分10
19秒前
20秒前
24秒前
halo完成签到,获得积分10
25秒前
抑郁小鼠解剖家完成签到,获得积分10
25秒前
忧心的不言完成签到,获得积分10
27秒前
5_羟色胺完成签到,获得积分10
29秒前
12135发布了新的文献求助30
29秒前
wanci应助科研通管家采纳,获得10
32秒前
小蘑菇应助科研通管家采纳,获得10
32秒前
科研通AI2S应助科研通管家采纳,获得10
32秒前
科研通AI6应助科研通管家采纳,获得80
32秒前
华仔应助科研通管家采纳,获得10
32秒前
科研通AI2S应助科研通管家采纳,获得30
32秒前
爱喝酸奶完成签到 ,获得积分10
32秒前
njgi发布了新的文献求助10
33秒前
材小料完成签到,获得积分10
34秒前
FashionBoy应助重要谷雪采纳,获得10
35秒前
爱偷懒的猪完成签到,获得积分10
36秒前
怂宝儿完成签到,获得积分10
37秒前
38秒前
40秒前
水澈天澜发布了新的文献求助20
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563713
求助须知:如何正确求助?哪些是违规求助? 4648650
关于积分的说明 14685821
捐赠科研通 4590597
什么是DOI,文献DOI怎么找? 2518657
邀请新用户注册赠送积分活动 1491243
关于科研通互助平台的介绍 1462521