Predicting miRNA–disease associations via learning multimodal networks and fusing mixed neighborhood information

相似性(几何) 计算机科学 疾病 联想(心理学) 人工智能 嵌入 机器学习 医学 认识论 图像(数学) 哲学 病理
作者
Zhengzheng Lou,Zhaoxu Cheng,Hui Li,Zhaogang Teng,Yang Liu,Zhen Tian
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (5) 被引量:32
标识
DOI:10.1093/bib/bbac159
摘要

In recent years, a large number of biological experiments have strongly shown that miRNAs play an important role in understanding disease pathogenesis. The discovery of miRNA-disease associations is beneficial for disease diagnosis and treatment. Since inferring these associations through biological experiments is time-consuming and expensive, researchers have sought to identify the associations utilizing computational approaches. Graph Convolutional Networks (GCNs), which exhibit excellent performance in link prediction problems, have been successfully used in miRNA-disease association prediction. However, GCNs only consider 1st-order neighborhood information at one layer but fail to capture information from high-order neighbors to learn miRNA and disease representations through information propagation. Therefore, how to aggregate information from high-order neighborhood effectively in an explicit way is still challenging.To address such a challenge, we propose a novel method called mixed neighborhood information for miRNA-disease association (MINIMDA), which could fuse mixed high-order neighborhood information of miRNAs and diseases in multimodal networks. First, MINIMDA constructs the integrated miRNA similarity network and integrated disease similarity network respectively with their multisource information. Then, the embedding representations of miRNAs and diseases are obtained by fusing mixed high-order neighborhood information from multimodal network which are the integrated miRNA similarity network, integrated disease similarity network and the miRNA-disease association networks. Finally, we concentrate the multimodal embedding representations of miRNAs and diseases and feed them into the multilayer perceptron (MLP) to predict their underlying associations. Extensive experimental results show that MINIMDA is superior to other state-of-the-art methods overall. Moreover, the outstanding performance on case studies for esophageal cancer, colon tumor and lung cancer further demonstrates the effectiveness of MINIMDA.https://github.com/chengxu123/MINIMDA and http://120.79.173.96/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
思源应助pipisu123123采纳,获得10
刚刚
刚刚
2秒前
Yihsin发布了新的文献求助10
2秒前
3秒前
小鱼头发布了新的文献求助10
3秒前
LeiX完成签到,获得积分10
3秒前
3秒前
5秒前
6秒前
chenchenchen发布了新的文献求助10
7秒前
LO7pM2发布了新的文献求助10
7秒前
semon发布了新的文献求助10
7秒前
丘比特应助m赤子心采纳,获得10
7秒前
8秒前
小二郎应助csdv采纳,获得10
8秒前
youyou发布了新的文献求助30
9秒前
放肆青春发布了新的文献求助10
9秒前
11秒前
cebr完成签到,获得积分10
11秒前
11秒前
memory发布了新的文献求助10
12秒前
烟雨发布了新的文献求助10
13秒前
华仔应助yh采纳,获得10
13秒前
13秒前
14秒前
大模型应助123456采纳,获得10
15秒前
chenchenchen发布了新的文献求助10
15秒前
666666发布了新的文献求助10
15秒前
16秒前
酷酷水彤完成签到,获得积分10
16秒前
平淡的77发布了新的文献求助10
16秒前
wnw发布了新的文献求助10
18秒前
zhy117820发布了新的文献求助10
18秒前
小蘑菇应助高高采纳,获得10
18秒前
芍药完成签到 ,获得积分10
19秒前
20秒前
guri完成签到,获得积分20
20秒前
Ll发布了新的文献求助10
20秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309599
求助须知:如何正确求助?哪些是违规求助? 2942884
关于积分的说明 8511456
捐赠科研通 2617981
什么是DOI,文献DOI怎么找? 1430741
科研通“疑难数据库(出版商)”最低求助积分说明 664212
邀请新用户注册赠送积分活动 649424