Predicting miRNA–disease associations via learning multimodal networks and fusing mixed neighborhood information

相似性(几何) 计算机科学 疾病 联想(心理学) 人工智能 嵌入 机器学习 医学 认识论 图像(数学) 哲学 病理
作者
Zhengzheng Lou,Zhaoxu Cheng,Hui Li,Zhaogang Teng,Yang Liu,Zhen Tian
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (5) 被引量:32
标识
DOI:10.1093/bib/bbac159
摘要

In recent years, a large number of biological experiments have strongly shown that miRNAs play an important role in understanding disease pathogenesis. The discovery of miRNA-disease associations is beneficial for disease diagnosis and treatment. Since inferring these associations through biological experiments is time-consuming and expensive, researchers have sought to identify the associations utilizing computational approaches. Graph Convolutional Networks (GCNs), which exhibit excellent performance in link prediction problems, have been successfully used in miRNA-disease association prediction. However, GCNs only consider 1st-order neighborhood information at one layer but fail to capture information from high-order neighbors to learn miRNA and disease representations through information propagation. Therefore, how to aggregate information from high-order neighborhood effectively in an explicit way is still challenging.To address such a challenge, we propose a novel method called mixed neighborhood information for miRNA-disease association (MINIMDA), which could fuse mixed high-order neighborhood information of miRNAs and diseases in multimodal networks. First, MINIMDA constructs the integrated miRNA similarity network and integrated disease similarity network respectively with their multisource information. Then, the embedding representations of miRNAs and diseases are obtained by fusing mixed high-order neighborhood information from multimodal network which are the integrated miRNA similarity network, integrated disease similarity network and the miRNA-disease association networks. Finally, we concentrate the multimodal embedding representations of miRNAs and diseases and feed them into the multilayer perceptron (MLP) to predict their underlying associations. Extensive experimental results show that MINIMDA is superior to other state-of-the-art methods overall. Moreover, the outstanding performance on case studies for esophageal cancer, colon tumor and lung cancer further demonstrates the effectiveness of MINIMDA.https://github.com/chengxu123/MINIMDA and http://120.79.173.96/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助150
刚刚
获野千发布了新的文献求助10
刚刚
向日葵完成签到,获得积分10
2秒前
gao完成签到 ,获得积分10
3秒前
小梦完成签到,获得积分10
3秒前
ghjghk发布了新的文献求助10
4秒前
一二完成签到,获得积分10
6秒前
LLLKJ完成签到,获得积分10
7秒前
lxcy0612完成签到,获得积分10
8秒前
zhangxin完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
晓风完成签到,获得积分10
10秒前
小点完成签到 ,获得积分10
10秒前
获野千完成签到 ,获得积分10
12秒前
鸽子完成签到 ,获得积分10
13秒前
14秒前
彭于彦祖应助科研通管家采纳,获得150
14秒前
彭于彦祖应助科研通管家采纳,获得50
14秒前
FashionBoy应助科研通管家采纳,获得10
14秒前
日天的马铃薯完成签到,获得积分10
14秒前
lit应助科研通管家采纳,获得10
14秒前
lit应助科研通管家采纳,获得10
14秒前
14秒前
我说我话完成签到 ,获得积分10
15秒前
17秒前
文龙完成签到 ,获得积分10
21秒前
21秒前
量子星尘发布了新的文献求助10
23秒前
Sindy完成签到,获得积分10
24秒前
一水独流完成签到,获得积分10
24秒前
火星上的羞花完成签到,获得积分10
24秒前
関电脑完成签到,获得积分10
24秒前
宝玉发布了新的文献求助10
28秒前
飘飘玲应助宝玉采纳,获得10
32秒前
量子星尘发布了新的文献求助10
33秒前
39秒前
世外完成签到,获得积分10
39秒前
克泷完成签到 ,获得积分10
42秒前
peng完成签到 ,获得积分10
43秒前
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Nach dem Geist? 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5044644
求助须知:如何正确求助?哪些是违规求助? 4274226
关于积分的说明 13323416
捐赠科研通 4087927
什么是DOI,文献DOI怎么找? 2236588
邀请新用户注册赠送积分活动 1244008
关于科研通互助平台的介绍 1172033