Predicting miRNA–disease associations via learning multimodal networks and fusing mixed neighborhood information

相似性(几何) 计算机科学 疾病 联想(心理学) 人工智能 嵌入 机器学习 医学 认识论 图像(数学) 哲学 病理
作者
Zhengzheng Lou,Zhaoxu Cheng,Hui Li,Zhaogang Teng,Yang Liu,Zhen Tian
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (5) 被引量:32
标识
DOI:10.1093/bib/bbac159
摘要

In recent years, a large number of biological experiments have strongly shown that miRNAs play an important role in understanding disease pathogenesis. The discovery of miRNA-disease associations is beneficial for disease diagnosis and treatment. Since inferring these associations through biological experiments is time-consuming and expensive, researchers have sought to identify the associations utilizing computational approaches. Graph Convolutional Networks (GCNs), which exhibit excellent performance in link prediction problems, have been successfully used in miRNA-disease association prediction. However, GCNs only consider 1st-order neighborhood information at one layer but fail to capture information from high-order neighbors to learn miRNA and disease representations through information propagation. Therefore, how to aggregate information from high-order neighborhood effectively in an explicit way is still challenging.To address such a challenge, we propose a novel method called mixed neighborhood information for miRNA-disease association (MINIMDA), which could fuse mixed high-order neighborhood information of miRNAs and diseases in multimodal networks. First, MINIMDA constructs the integrated miRNA similarity network and integrated disease similarity network respectively with their multisource information. Then, the embedding representations of miRNAs and diseases are obtained by fusing mixed high-order neighborhood information from multimodal network which are the integrated miRNA similarity network, integrated disease similarity network and the miRNA-disease association networks. Finally, we concentrate the multimodal embedding representations of miRNAs and diseases and feed them into the multilayer perceptron (MLP) to predict their underlying associations. Extensive experimental results show that MINIMDA is superior to other state-of-the-art methods overall. Moreover, the outstanding performance on case studies for esophageal cancer, colon tumor and lung cancer further demonstrates the effectiveness of MINIMDA.https://github.com/chengxu123/MINIMDA and http://120.79.173.96/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助兰兰采纳,获得10
1秒前
chhzz完成签到 ,获得积分10
1秒前
2秒前
浮游应助唠叨的又菡采纳,获得10
2秒前
2秒前
3秒前
在水一方应助唠叨的又菡采纳,获得10
3秒前
科研通AI2S应助唠叨的又菡采纳,获得10
3秒前
英姑应助唠叨的又菡采纳,获得10
3秒前
3秒前
充电宝应助唠叨的又菡采纳,获得10
3秒前
3秒前
Orange应助唠叨的又菡采纳,获得10
3秒前
px发布了新的文献求助10
4秒前
弱水应助shenzz采纳,获得10
6秒前
传奇3应助cckiki采纳,获得10
7秒前
光热效应发布了新的文献求助10
8秒前
徐徐徐完成签到,获得积分10
8秒前
丘比特应助Kannan采纳,获得10
8秒前
10秒前
怡然的灯泡完成签到,获得积分10
10秒前
imlarry发布了新的文献求助100
14秒前
光热效应完成签到,获得积分10
14秒前
15秒前
在水一方应助proton采纳,获得10
15秒前
汉堡9999号完成签到,获得积分10
15秒前
zyf完成签到,获得积分10
16秒前
谢狗白景发布了新的文献求助10
17秒前
潇洒沛芹完成签到,获得积分10
17秒前
刘子完成签到 ,获得积分20
19秒前
汉堡9999号发布了新的文献求助10
20秒前
20秒前
unaive完成签到,获得积分10
20秒前
嘻嘻完成签到,获得积分10
21秒前
23秒前
Lee完成签到,获得积分10
23秒前
proton发布了新的文献求助10
26秒前
小绵羊发布了新的文献求助20
26秒前
26秒前
庞威完成签到 ,获得积分10
26秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
The Emotional Life of Organisations 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5215115
求助须知:如何正确求助?哪些是违规求助? 4390318
关于积分的说明 13669481
捐赠科研通 4251938
什么是DOI,文献DOI怎么找? 2332948
邀请新用户注册赠送积分活动 1330569
关于科研通互助平台的介绍 1284332