亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting miRNA–disease associations via learning multimodal networks and fusing mixed neighborhood information

相似性(几何) 计算机科学 疾病 联想(心理学) 人工智能 嵌入 机器学习 医学 认识论 图像(数学) 哲学 病理
作者
Zhengzheng Lou,Zhaoxu Cheng,Hui Li,Zhaogang Teng,Yang Liu,Zhen Tian
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (5) 被引量:32
标识
DOI:10.1093/bib/bbac159
摘要

In recent years, a large number of biological experiments have strongly shown that miRNAs play an important role in understanding disease pathogenesis. The discovery of miRNA-disease associations is beneficial for disease diagnosis and treatment. Since inferring these associations through biological experiments is time-consuming and expensive, researchers have sought to identify the associations utilizing computational approaches. Graph Convolutional Networks (GCNs), which exhibit excellent performance in link prediction problems, have been successfully used in miRNA-disease association prediction. However, GCNs only consider 1st-order neighborhood information at one layer but fail to capture information from high-order neighbors to learn miRNA and disease representations through information propagation. Therefore, how to aggregate information from high-order neighborhood effectively in an explicit way is still challenging.To address such a challenge, we propose a novel method called mixed neighborhood information for miRNA-disease association (MINIMDA), which could fuse mixed high-order neighborhood information of miRNAs and diseases in multimodal networks. First, MINIMDA constructs the integrated miRNA similarity network and integrated disease similarity network respectively with their multisource information. Then, the embedding representations of miRNAs and diseases are obtained by fusing mixed high-order neighborhood information from multimodal network which are the integrated miRNA similarity network, integrated disease similarity network and the miRNA-disease association networks. Finally, we concentrate the multimodal embedding representations of miRNAs and diseases and feed them into the multilayer perceptron (MLP) to predict their underlying associations. Extensive experimental results show that MINIMDA is superior to other state-of-the-art methods overall. Moreover, the outstanding performance on case studies for esophageal cancer, colon tumor and lung cancer further demonstrates the effectiveness of MINIMDA.https://github.com/chengxu123/MINIMDA and http://120.79.173.96/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
加菲丰丰应助科研通管家采纳,获得10
22秒前
Jasper应助科研通管家采纳,获得10
22秒前
SciGPT应助科研通管家采纳,获得10
22秒前
医学生完成签到 ,获得积分10
48秒前
NexusExplorer应助文艺的寻芹采纳,获得10
1分钟前
1分钟前
等待蚂蚁发布了新的文献求助10
1分钟前
1分钟前
开心每一天完成签到 ,获得积分10
2分钟前
碳土不凡完成签到 ,获得积分10
2分钟前
2分钟前
FashionBoy应助小小娜采纳,获得10
3分钟前
3分钟前
小小娜发布了新的文献求助10
3分钟前
小小娜完成签到,获得积分10
3分钟前
科研通AI5应助002采纳,获得10
3分钟前
4分钟前
002发布了新的文献求助10
4分钟前
4分钟前
4分钟前
科研通AI5应助科研通管家采纳,获得30
4分钟前
4分钟前
哈哈发布了新的文献求助10
4分钟前
何何发布了新的文献求助10
4分钟前
CipherSage应助哈哈采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
飞快的孱发布了新的文献求助10
4分钟前
4分钟前
Nicole完成签到,获得积分20
4分钟前
Nicole发布了新的文献求助10
5分钟前
花陵完成签到 ,获得积分10
5分钟前
胖胖猪发布了新的文献求助10
5分钟前
6分钟前
飞快的孱发布了新的文献求助10
6分钟前
6分钟前
小二郎应助幽默安珊采纳,获得10
6分钟前
无名发布了新的文献求助10
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4626119
求助须知:如何正确求助?哪些是违规求助? 4025136
关于积分的说明 12458423
捐赠科研通 3710373
什么是DOI,文献DOI怎么找? 2046578
邀请新用户注册赠送积分活动 1078526
科研通“疑难数据库(出版商)”最低求助积分说明 960987