Predicting miRNA–disease associations via learning multimodal networks and fusing mixed neighborhood information

相似性(几何) 计算机科学 疾病 联想(心理学) 人工智能 嵌入 机器学习 医学 认识论 图像(数学) 哲学 病理
作者
Zhengzheng Lou,Zhaoxu Cheng,Hui Li,Zhaogang Teng,Yang Liu,Zhen Tian
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (5) 被引量:32
标识
DOI:10.1093/bib/bbac159
摘要

In recent years, a large number of biological experiments have strongly shown that miRNAs play an important role in understanding disease pathogenesis. The discovery of miRNA-disease associations is beneficial for disease diagnosis and treatment. Since inferring these associations through biological experiments is time-consuming and expensive, researchers have sought to identify the associations utilizing computational approaches. Graph Convolutional Networks (GCNs), which exhibit excellent performance in link prediction problems, have been successfully used in miRNA-disease association prediction. However, GCNs only consider 1st-order neighborhood information at one layer but fail to capture information from high-order neighbors to learn miRNA and disease representations through information propagation. Therefore, how to aggregate information from high-order neighborhood effectively in an explicit way is still challenging.To address such a challenge, we propose a novel method called mixed neighborhood information for miRNA-disease association (MINIMDA), which could fuse mixed high-order neighborhood information of miRNAs and diseases in multimodal networks. First, MINIMDA constructs the integrated miRNA similarity network and integrated disease similarity network respectively with their multisource information. Then, the embedding representations of miRNAs and diseases are obtained by fusing mixed high-order neighborhood information from multimodal network which are the integrated miRNA similarity network, integrated disease similarity network and the miRNA-disease association networks. Finally, we concentrate the multimodal embedding representations of miRNAs and diseases and feed them into the multilayer perceptron (MLP) to predict their underlying associations. Extensive experimental results show that MINIMDA is superior to other state-of-the-art methods overall. Moreover, the outstanding performance on case studies for esophageal cancer, colon tumor and lung cancer further demonstrates the effectiveness of MINIMDA.https://github.com/chengxu123/MINIMDA and http://120.79.173.96/.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助Vegetabledog采纳,获得10
刚刚
善学以致用应助阳光芫采纳,获得10
1秒前
2秒前
有魅力强炫完成签到,获得积分10
2秒前
2秒前
xiao发布了新的文献求助10
3秒前
FF完成签到 ,获得积分10
4秒前
诚心的飞扬应助神明采纳,获得10
4秒前
可爱的函函应助神明采纳,获得10
4秒前
iyaaaa完成签到 ,获得积分10
4秒前
5秒前
zzr123发布了新的文献求助10
5秒前
6秒前
7秒前
8秒前
大模型应助小郁采纳,获得10
8秒前
小Z发布了新的文献求助10
9秒前
苏silence发布了新的文献求助10
9秒前
不摇碧莲完成签到 ,获得积分10
10秒前
丘比特应助ganlu采纳,获得10
11秒前
11秒前
朝与暮发布了新的文献求助10
12秒前
白某完成签到,获得积分20
12秒前
量子星尘发布了新的文献求助10
12秒前
idynamics发布了新的文献求助10
13秒前
ling发布了新的文献求助10
13秒前
丘比特应助勤恳冰淇淋采纳,获得50
13秒前
13秒前
一颗蓝莓完成签到 ,获得积分10
15秒前
白某发布了新的文献求助10
16秒前
菜菜发布了新的文献求助10
16秒前
Ymie应助牛肉面采纳,获得50
16秒前
王路宽发布了新的文献求助10
18秒前
爆米花应助牛马采纳,获得10
18秒前
CipherSage应助霸气的晓夏采纳,获得10
19秒前
19秒前
19秒前
Kiry完成签到 ,获得积分10
20秒前
orixero应助温1010_采纳,获得10
21秒前
上官若男应助勤恳冰淇淋采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 640
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5572718
求助须知:如何正确求助?哪些是违规求助? 4658668
关于积分的说明 14722640
捐赠科研通 4598568
什么是DOI,文献DOI怎么找? 2523879
邀请新用户注册赠送积分活动 1494564
关于科研通互助平台的介绍 1464604