已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Predicting miRNA–disease associations via learning multimodal networks and fusing mixed neighborhood information

相似性(几何) 计算机科学 疾病 联想(心理学) 人工智能 嵌入 机器学习 医学 认识论 图像(数学) 哲学 病理
作者
Zhengzheng Lou,Zhaoxu Cheng,Hui Li,Zhaogang Teng,Yang Liu,Zhen Tian
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (5) 被引量:32
标识
DOI:10.1093/bib/bbac159
摘要

In recent years, a large number of biological experiments have strongly shown that miRNAs play an important role in understanding disease pathogenesis. The discovery of miRNA-disease associations is beneficial for disease diagnosis and treatment. Since inferring these associations through biological experiments is time-consuming and expensive, researchers have sought to identify the associations utilizing computational approaches. Graph Convolutional Networks (GCNs), which exhibit excellent performance in link prediction problems, have been successfully used in miRNA-disease association prediction. However, GCNs only consider 1st-order neighborhood information at one layer but fail to capture information from high-order neighbors to learn miRNA and disease representations through information propagation. Therefore, how to aggregate information from high-order neighborhood effectively in an explicit way is still challenging.To address such a challenge, we propose a novel method called mixed neighborhood information for miRNA-disease association (MINIMDA), which could fuse mixed high-order neighborhood information of miRNAs and diseases in multimodal networks. First, MINIMDA constructs the integrated miRNA similarity network and integrated disease similarity network respectively with their multisource information. Then, the embedding representations of miRNAs and diseases are obtained by fusing mixed high-order neighborhood information from multimodal network which are the integrated miRNA similarity network, integrated disease similarity network and the miRNA-disease association networks. Finally, we concentrate the multimodal embedding representations of miRNAs and diseases and feed them into the multilayer perceptron (MLP) to predict their underlying associations. Extensive experimental results show that MINIMDA is superior to other state-of-the-art methods overall. Moreover, the outstanding performance on case studies for esophageal cancer, colon tumor and lung cancer further demonstrates the effectiveness of MINIMDA.https://github.com/chengxu123/MINIMDA and http://120.79.173.96/.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷静的忆秋完成签到,获得积分10
2秒前
万能的悲剧完成签到 ,获得积分10
3秒前
xxwyj完成签到,获得积分10
4秒前
5秒前
小茗发布了新的文献求助10
5秒前
迅速的智宸完成签到,获得积分10
7秒前
邓筠颐完成签到,获得积分10
9秒前
xhntt完成签到,获得积分10
10秒前
张建凯完成签到,获得积分10
10秒前
oddball三等中士完成签到,获得积分10
13秒前
orixero应助邓筠颐采纳,获得10
13秒前
13秒前
zgl0806完成签到,获得积分10
19秒前
药小隐发布了新的文献求助10
19秒前
一只眠羊完成签到 ,获得积分10
20秒前
KaK完成签到,获得积分10
20秒前
爱大美完成签到,获得积分10
21秒前
凌奕添完成签到 ,获得积分10
23秒前
顾矜应助Dylan采纳,获得30
23秒前
zsyhcl应助瓜小采纳,获得10
25秒前
27秒前
GT完成签到,获得积分0
27秒前
zsyhcl应助热心平萱采纳,获得10
29秒前
30秒前
WJane完成签到,获得积分10
30秒前
33秒前
研友_VZG7GZ应助JUNJIU采纳,获得10
34秒前
mm完成签到 ,获得积分10
35秒前
35秒前
36秒前
37秒前
hei发布了新的文献求助10
38秒前
lynn_zhang发布了新的文献求助10
38秒前
思源应助药小隐采纳,获得10
40秒前
独指蜗牛完成签到 ,获得积分10
42秒前
44秒前
子焱完成签到 ,获得积分10
44秒前
44秒前
lynn_zhang完成签到,获得积分10
45秒前
45秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5681075
求助须知:如何正确求助?哪些是违规求助? 5003997
关于积分的说明 15174789
捐赠科研通 4840762
什么是DOI,文献DOI怎么找? 2594411
邀请新用户注册赠送积分活动 1547531
关于科研通互助平台的介绍 1505468