Predicting miRNA–disease associations via learning multimodal networks and fusing mixed neighborhood information

相似性(几何) 计算机科学 疾病 联想(心理学) 人工智能 嵌入 机器学习 医学 认识论 图像(数学) 哲学 病理
作者
Zhengzheng Lou,Zhaoxu Cheng,Hui Li,Zhaogang Teng,Yang Liu,Zhen Tian
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (5) 被引量:32
标识
DOI:10.1093/bib/bbac159
摘要

In recent years, a large number of biological experiments have strongly shown that miRNAs play an important role in understanding disease pathogenesis. The discovery of miRNA-disease associations is beneficial for disease diagnosis and treatment. Since inferring these associations through biological experiments is time-consuming and expensive, researchers have sought to identify the associations utilizing computational approaches. Graph Convolutional Networks (GCNs), which exhibit excellent performance in link prediction problems, have been successfully used in miRNA-disease association prediction. However, GCNs only consider 1st-order neighborhood information at one layer but fail to capture information from high-order neighbors to learn miRNA and disease representations through information propagation. Therefore, how to aggregate information from high-order neighborhood effectively in an explicit way is still challenging.To address such a challenge, we propose a novel method called mixed neighborhood information for miRNA-disease association (MINIMDA), which could fuse mixed high-order neighborhood information of miRNAs and diseases in multimodal networks. First, MINIMDA constructs the integrated miRNA similarity network and integrated disease similarity network respectively with their multisource information. Then, the embedding representations of miRNAs and diseases are obtained by fusing mixed high-order neighborhood information from multimodal network which are the integrated miRNA similarity network, integrated disease similarity network and the miRNA-disease association networks. Finally, we concentrate the multimodal embedding representations of miRNAs and diseases and feed them into the multilayer perceptron (MLP) to predict their underlying associations. Extensive experimental results show that MINIMDA is superior to other state-of-the-art methods overall. Moreover, the outstanding performance on case studies for esophageal cancer, colon tumor and lung cancer further demonstrates the effectiveness of MINIMDA.https://github.com/chengxu123/MINIMDA and http://120.79.173.96/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小土豆发布了新的文献求助50
刚刚
科研通AI5应助跑在颖采纳,获得10
刚刚
追寻代真发布了新的文献求助10
1秒前
mrmrer完成签到,获得积分20
1秒前
1秒前
1秒前
毛慢慢发布了新的文献求助10
2秒前
2秒前
今天不学习明天变垃圾完成签到,获得积分10
2秒前
3秒前
3秒前
布布完成签到,获得积分10
4秒前
一独白发布了新的文献求助10
4秒前
周周完成签到 ,获得积分10
4秒前
淡然完成签到,获得积分10
5秒前
明理小土豆完成签到,获得积分10
5秒前
刘国建郭菱香完成签到,获得积分10
5秒前
嘤嘤嘤完成签到,获得积分10
5秒前
九川应助粱自中采纳,获得10
5秒前
无辜之卉完成签到,获得积分10
6秒前
无花果应助Island采纳,获得10
6秒前
6秒前
SHDeathlock发布了新的文献求助200
7秒前
Owen应助醒醒采纳,获得10
7秒前
无心的代桃完成签到,获得积分10
8秒前
追寻代真完成签到,获得积分10
8秒前
晓兴兴完成签到,获得积分10
8秒前
leon发布了新的文献求助10
9秒前
洽洽瓜子shine完成签到,获得积分10
9秒前
简单的大白菜真实的钥匙完成签到,获得积分10
10秒前
11秒前
一独白完成签到,获得积分10
12秒前
在水一方应助坚强的樱采纳,获得10
12秒前
慕青应助尼亚吉拉采纳,获得10
13秒前
快乐小白菜应助甜酱采纳,获得10
13秒前
13秒前
qq应助毛慢慢采纳,获得10
14秒前
14秒前
科研通AI5应助吴岳采纳,获得10
14秒前
天天快乐应助ufuon采纳,获得10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762