Predicting miRNA–disease associations via learning multimodal networks and fusing mixed neighborhood information

相似性(几何) 计算机科学 疾病 联想(心理学) 人工智能 嵌入 机器学习 医学 认识论 图像(数学) 哲学 病理
作者
Zhengzheng Lou,Zhaoxu Cheng,Hui Li,Zhaogang Teng,Yang Liu,Zhen Tian
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (5) 被引量:32
标识
DOI:10.1093/bib/bbac159
摘要

In recent years, a large number of biological experiments have strongly shown that miRNAs play an important role in understanding disease pathogenesis. The discovery of miRNA-disease associations is beneficial for disease diagnosis and treatment. Since inferring these associations through biological experiments is time-consuming and expensive, researchers have sought to identify the associations utilizing computational approaches. Graph Convolutional Networks (GCNs), which exhibit excellent performance in link prediction problems, have been successfully used in miRNA-disease association prediction. However, GCNs only consider 1st-order neighborhood information at one layer but fail to capture information from high-order neighbors to learn miRNA and disease representations through information propagation. Therefore, how to aggregate information from high-order neighborhood effectively in an explicit way is still challenging.To address such a challenge, we propose a novel method called mixed neighborhood information for miRNA-disease association (MINIMDA), which could fuse mixed high-order neighborhood information of miRNAs and diseases in multimodal networks. First, MINIMDA constructs the integrated miRNA similarity network and integrated disease similarity network respectively with their multisource information. Then, the embedding representations of miRNAs and diseases are obtained by fusing mixed high-order neighborhood information from multimodal network which are the integrated miRNA similarity network, integrated disease similarity network and the miRNA-disease association networks. Finally, we concentrate the multimodal embedding representations of miRNAs and diseases and feed them into the multilayer perceptron (MLP) to predict their underlying associations. Extensive experimental results show that MINIMDA is superior to other state-of-the-art methods overall. Moreover, the outstanding performance on case studies for esophageal cancer, colon tumor and lung cancer further demonstrates the effectiveness of MINIMDA.https://github.com/chengxu123/MINIMDA and http://120.79.173.96/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zeng完成签到,获得积分10
刚刚
Jasper应助oio采纳,获得10
1秒前
Jasper应助心灵美的芝麻采纳,获得10
1秒前
bei完成签到,获得积分10
1秒前
善学以致用应助Lili采纳,获得10
1秒前
2秒前
ggg发布了新的文献求助10
2秒前
3秒前
西西西完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
niuniu完成签到,获得积分20
4秒前
Kenzonvay完成签到,获得积分10
4秒前
顺利毕业完成签到 ,获得积分10
4秒前
5秒前
酷波er应助Minton采纳,获得10
5秒前
爆米花应助追风采纳,获得10
6秒前
Edison发布了新的文献求助10
6秒前
odell发布了新的文献求助10
6秒前
7秒前
7秒前
laochen发布了新的文献求助10
7秒前
heylay发布了新的文献求助10
7秒前
MX001发布了新的文献求助10
7秒前
ggg完成签到,获得积分10
8秒前
慕子默完成签到,获得积分10
8秒前
yyytr发布了新的文献求助10
8秒前
阿木木完成签到,获得积分10
9秒前
时米米米发布了新的文献求助10
9秒前
9秒前
zyf完成签到,获得积分10
9秒前
忧伤的二锅头完成签到 ,获得积分10
10秒前
JPH1990发布了新的文献求助30
10秒前
Baraka完成签到,获得积分10
10秒前
油菜籽发布了新的文献求助10
11秒前
海棠花未眠完成签到,获得积分10
11秒前
12秒前
onesail完成签到 ,获得积分10
13秒前
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958608
求助须知:如何正确求助?哪些是违规求助? 3504895
关于积分的说明 11120971
捐赠科研通 3236246
什么是DOI,文献DOI怎么找? 1788726
邀请新用户注册赠送积分活动 871297
科研通“疑难数据库(出版商)”最低求助积分说明 802680