Predicting miRNA–disease associations via learning multimodal networks and fusing mixed neighborhood information

相似性(几何) 计算机科学 疾病 联想(心理学) 人工智能 嵌入 机器学习 医学 认识论 图像(数学) 哲学 病理
作者
Zhengzheng Lou,Zhaoxu Cheng,Hui Li,Zhaogang Teng,Yang Liu,Zhen Tian
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (5) 被引量:32
标识
DOI:10.1093/bib/bbac159
摘要

In recent years, a large number of biological experiments have strongly shown that miRNAs play an important role in understanding disease pathogenesis. The discovery of miRNA-disease associations is beneficial for disease diagnosis and treatment. Since inferring these associations through biological experiments is time-consuming and expensive, researchers have sought to identify the associations utilizing computational approaches. Graph Convolutional Networks (GCNs), which exhibit excellent performance in link prediction problems, have been successfully used in miRNA-disease association prediction. However, GCNs only consider 1st-order neighborhood information at one layer but fail to capture information from high-order neighbors to learn miRNA and disease representations through information propagation. Therefore, how to aggregate information from high-order neighborhood effectively in an explicit way is still challenging.To address such a challenge, we propose a novel method called mixed neighborhood information for miRNA-disease association (MINIMDA), which could fuse mixed high-order neighborhood information of miRNAs and diseases in multimodal networks. First, MINIMDA constructs the integrated miRNA similarity network and integrated disease similarity network respectively with their multisource information. Then, the embedding representations of miRNAs and diseases are obtained by fusing mixed high-order neighborhood information from multimodal network which are the integrated miRNA similarity network, integrated disease similarity network and the miRNA-disease association networks. Finally, we concentrate the multimodal embedding representations of miRNAs and diseases and feed them into the multilayer perceptron (MLP) to predict their underlying associations. Extensive experimental results show that MINIMDA is superior to other state-of-the-art methods overall. Moreover, the outstanding performance on case studies for esophageal cancer, colon tumor and lung cancer further demonstrates the effectiveness of MINIMDA.https://github.com/chengxu123/MINIMDA and http://120.79.173.96/.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mmyhn发布了新的文献求助10
1秒前
师无完成签到,获得积分10
2秒前
憨憨发布了新的文献求助10
2秒前
FangyingTang完成签到 ,获得积分10
2秒前
2秒前
2秒前
数峰青完成签到,获得积分20
2秒前
CodeCraft应助健忘怜雪采纳,获得10
3秒前
3秒前
愉快秀发布了新的文献求助10
4秒前
隐形曼青应助11采纳,获得10
5秒前
5秒前
劈我瓜是吧发布了新的文献求助500
5秒前
yk完成签到 ,获得积分10
6秒前
范范完成签到,获得积分10
6秒前
ok完成签到,获得积分10
6秒前
pancake发布了新的文献求助30
7秒前
达雨发布了新的文献求助10
7秒前
8秒前
William_l_c发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
9秒前
情怀应助我是大霖子采纳,获得10
9秒前
小小阿杰发布了新的文献求助10
10秒前
Zoe发布了新的文献求助10
10秒前
CipherSage应助任性的梦菲采纳,获得10
11秒前
顾矜应助zjq采纳,获得10
11秒前
11秒前
12秒前
柴鱼0625发布了新的文献求助30
12秒前
13秒前
HM发布了新的文献求助10
13秒前
ding应助愉快秀采纳,获得10
13秒前
15秒前
Yingkun_Xu发布了新的文献求助10
16秒前
祖国的花朵完成签到,获得积分10
16秒前
16秒前
17秒前
17秒前
Lucas应助Augenstern采纳,获得10
18秒前
aaaa发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5577111
求助须知:如何正确求助?哪些是违规求助? 4662375
关于积分的说明 14741491
捐赠科研通 4603039
什么是DOI,文献DOI怎么找? 2526066
邀请新用户注册赠送积分活动 1495999
关于科研通互助平台的介绍 1465483