亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting miRNA–disease associations via learning multimodal networks and fusing mixed neighborhood information

相似性(几何) 计算机科学 疾病 联想(心理学) 人工智能 嵌入 机器学习 医学 认识论 图像(数学) 哲学 病理
作者
Zhengzheng Lou,Zhaoxu Cheng,Hui Li,Zhaogang Teng,Yang Liu,Zhen Tian
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (5) 被引量:32
标识
DOI:10.1093/bib/bbac159
摘要

In recent years, a large number of biological experiments have strongly shown that miRNAs play an important role in understanding disease pathogenesis. The discovery of miRNA-disease associations is beneficial for disease diagnosis and treatment. Since inferring these associations through biological experiments is time-consuming and expensive, researchers have sought to identify the associations utilizing computational approaches. Graph Convolutional Networks (GCNs), which exhibit excellent performance in link prediction problems, have been successfully used in miRNA-disease association prediction. However, GCNs only consider 1st-order neighborhood information at one layer but fail to capture information from high-order neighbors to learn miRNA and disease representations through information propagation. Therefore, how to aggregate information from high-order neighborhood effectively in an explicit way is still challenging.To address such a challenge, we propose a novel method called mixed neighborhood information for miRNA-disease association (MINIMDA), which could fuse mixed high-order neighborhood information of miRNAs and diseases in multimodal networks. First, MINIMDA constructs the integrated miRNA similarity network and integrated disease similarity network respectively with their multisource information. Then, the embedding representations of miRNAs and diseases are obtained by fusing mixed high-order neighborhood information from multimodal network which are the integrated miRNA similarity network, integrated disease similarity network and the miRNA-disease association networks. Finally, we concentrate the multimodal embedding representations of miRNAs and diseases and feed them into the multilayer perceptron (MLP) to predict their underlying associations. Extensive experimental results show that MINIMDA is superior to other state-of-the-art methods overall. Moreover, the outstanding performance on case studies for esophageal cancer, colon tumor and lung cancer further demonstrates the effectiveness of MINIMDA.https://github.com/chengxu123/MINIMDA and http://120.79.173.96/.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
热情依白发布了新的文献求助10
14秒前
41秒前
NFS发布了新的文献求助10
48秒前
空儒完成签到 ,获得积分10
52秒前
53秒前
Ken发布了新的文献求助10
57秒前
1分钟前
1分钟前
默默曼冬发布了新的文献求助10
1分钟前
aayy完成签到,获得积分20
1分钟前
乐乐应助科研通管家采纳,获得10
1分钟前
aayy关注了科研通微信公众号
1分钟前
河狸完成签到,获得积分10
2分钟前
2分钟前
许大脚完成签到 ,获得积分10
2分钟前
2分钟前
忞航完成签到 ,获得积分10
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
NexusExplorer应助科研通管家采纳,获得10
3分钟前
隐形曼青应助momo采纳,获得30
3分钟前
3分钟前
4分钟前
4分钟前
4分钟前
哈哈发布了新的文献求助30
4分钟前
小圭韦发布了新的文献求助10
4分钟前
南寅完成签到,获得积分10
5分钟前
5分钟前
默默曼冬完成签到,获得积分10
5分钟前
科研通AI6应助科研通管家采纳,获得10
5分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
mirror应助小圭韦采纳,获得10
6分钟前
天雨流芳完成签到 ,获得积分10
6分钟前
6分钟前
6分钟前
Yuki完成签到 ,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5681628
求助须知:如何正确求助?哪些是违规求助? 5011683
关于积分的说明 15175918
捐赠科研通 4841236
什么是DOI,文献DOI怎么找? 2594994
邀请新用户注册赠送积分活动 1547971
关于科研通互助平台的介绍 1506006