已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Predicting miRNA–disease associations via learning multimodal networks and fusing mixed neighborhood information

相似性(几何) 计算机科学 疾病 联想(心理学) 人工智能 嵌入 机器学习 医学 认识论 图像(数学) 哲学 病理
作者
Zhengzheng Lou,Zhaoxu Cheng,Hui Li,Zhaogang Teng,Yang Liu,Zhen Tian
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (5) 被引量:32
标识
DOI:10.1093/bib/bbac159
摘要

In recent years, a large number of biological experiments have strongly shown that miRNAs play an important role in understanding disease pathogenesis. The discovery of miRNA-disease associations is beneficial for disease diagnosis and treatment. Since inferring these associations through biological experiments is time-consuming and expensive, researchers have sought to identify the associations utilizing computational approaches. Graph Convolutional Networks (GCNs), which exhibit excellent performance in link prediction problems, have been successfully used in miRNA-disease association prediction. However, GCNs only consider 1st-order neighborhood information at one layer but fail to capture information from high-order neighbors to learn miRNA and disease representations through information propagation. Therefore, how to aggregate information from high-order neighborhood effectively in an explicit way is still challenging.To address such a challenge, we propose a novel method called mixed neighborhood information for miRNA-disease association (MINIMDA), which could fuse mixed high-order neighborhood information of miRNAs and diseases in multimodal networks. First, MINIMDA constructs the integrated miRNA similarity network and integrated disease similarity network respectively with their multisource information. Then, the embedding representations of miRNAs and diseases are obtained by fusing mixed high-order neighborhood information from multimodal network which are the integrated miRNA similarity network, integrated disease similarity network and the miRNA-disease association networks. Finally, we concentrate the multimodal embedding representations of miRNAs and diseases and feed them into the multilayer perceptron (MLP) to predict their underlying associations. Extensive experimental results show that MINIMDA is superior to other state-of-the-art methods overall. Moreover, the outstanding performance on case studies for esophageal cancer, colon tumor and lung cancer further demonstrates the effectiveness of MINIMDA.https://github.com/chengxu123/MINIMDA and http://120.79.173.96/.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
伊丽莎白发布了新的文献求助10
刚刚
领导范儿应助zzzdx采纳,获得10
3秒前
可爱的函函应助ke888采纳,获得30
4秒前
6秒前
bkagyin应助panyang采纳,获得10
7秒前
加油完成签到,获得积分10
7秒前
WXZ完成签到 ,获得积分10
7秒前
123发布了新的文献求助10
8秒前
9秒前
10秒前
善学以致用应助初夏采纳,获得10
12秒前
科研通AI2S应助lxy采纳,获得10
13秒前
bkagyin应助Oying采纳,获得10
13秒前
思源应助wz采纳,获得10
14秒前
15秒前
15秒前
清风完成签到,获得积分20
19秒前
pjjjjjjj发布了新的文献求助10
19秒前
Eamin发布了新的文献求助10
19秒前
20秒前
曾俊宇完成签到 ,获得积分10
21秒前
孙佳琦完成签到,获得积分10
22秒前
王啸岳完成签到,获得积分10
22秒前
23秒前
23秒前
23秒前
25秒前
充电宝应助还没睡采纳,获得10
25秒前
研小白发布了新的文献求助10
27秒前
Oying发布了新的文献求助10
27秒前
28秒前
29秒前
合适忆山完成签到,获得积分20
30秒前
31秒前
zzzdx发布了新的文献求助10
31秒前
33秒前
重要灵寒发布了新的文献求助10
34秒前
35秒前
Eamin完成签到,获得积分10
35秒前
烟花应助lululu采纳,获得10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5779070
求助须知:如何正确求助?哪些是违规求助? 5645586
关于积分的说明 15451137
捐赠科研通 4910574
什么是DOI,文献DOI怎么找? 2642735
邀请新用户注册赠送积分活动 1590426
关于科研通互助平台的介绍 1544793