Color computational ghost imaging by deep learning based on simulation data training.

计算机科学 人工智能 人工神经网络 计算机视觉 失真(音乐) 一般化 采样(信号处理) 过程(计算) 像素 理论(学习稳定性) 集合(抽象数据类型) 模式识别(心理学)
作者
Zhan Yu,Yang Liu,Jinxi Li,Xing Bai,Zhongzhuo Yang,Yang Ni,Xin Zhou
出处
期刊:Applied Optics [Optica Publishing Group]
卷期号:61 (4): 1022-1029 被引量:1
标识
DOI:10.1364/ao.447761
摘要

We present a new color computational ghost imaging strategy using a sole single-pixel detector and training by simulated dataset, which can eliminate the actual workload of acquiring experimental training datasets and reduce the sampling times for imaging experiments. First, the relative responsibility of the color computational ghost imaging device to different color channels is experimentally detected, and then enough data sets are simulated for training the neural network based on the response value. Because the simulation process is much simpler than the actual experiment, and the training set can be almost unlimited, the trained network model has good generalization. In the experiment with a sampling rate of only 4.1%, the trained neural network model can still recover the image information from the blurry ghost image, correct the color distortion of the image, and get a better reconstruction result. In addition, with the increase in the sampling rate, the details and color characteristics of the reconstruction result become better and better. Feasibility and stability of the proposed method have been verified by the reconstruction results of the trained network model on the color objects of different complexities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
逢场作戱__完成签到 ,获得积分10
1秒前
Bio应助科研通管家采纳,获得30
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
heyihao应助科研通管家采纳,获得10
1秒前
大模型应助科研通管家采纳,获得10
1秒前
科目三应助科研通管家采纳,获得30
1秒前
深情安青应助糕糕采纳,获得10
1秒前
Orange应助科研通管家采纳,获得10
2秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
Bio应助科研通管家采纳,获得30
2秒前
2秒前
科目三应助科研通管家采纳,获得10
2秒前
挖掘机应助科研通管家采纳,获得200
2秒前
斯文败类应助科研通管家采纳,获得10
2秒前
夕诙应助科研通管家采纳,获得20
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
小二郎应助科研通管家采纳,获得10
2秒前
Liufgui应助科研通管家采纳,获得30
3秒前
情怀应助科研通管家采纳,获得10
3秒前
3秒前
打打应助科研通管家采纳,获得10
3秒前
heyihao应助科研通管家采纳,获得30
3秒前
彭于彦祖应助科研通管家采纳,获得30
3秒前
顾矜应助科研通管家采纳,获得10
3秒前
情怀应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
彭于晏应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
7秒前
沿途一天完成签到,获得积分10
8秒前
清新的夏烟完成签到,获得积分10
8秒前
坦率的海豚完成签到,获得积分10
10秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998622
求助须知:如何正确求助?哪些是违规求助? 3538115
关于积分的说明 11273407
捐赠科研通 3277045
什么是DOI,文献DOI怎么找? 1807368
邀请新用户注册赠送积分活动 883854
科研通“疑难数据库(出版商)”最低求助积分说明 810070