Stick or carrot for traffic demand management? Evidence from experimental economics

损失厌恶 激励 劣势 经济 不公平厌恶 微观经济学 风险厌恶(心理学) 需求管理 计算机科学 运筹学 期望效用假设 工程类 数理经济学 数学分析 数学 人工智能 不平等 宏观经济学
作者
Ye Tian,Yudi Li,Jian Sun
出处
期刊:Transportation Research Part A-policy and Practice [Elsevier]
卷期号:160: 235-254 被引量:17
标识
DOI:10.1016/j.tra.2022.04.010
摘要

The debate between stick (penalties) and carrot (rewards) strategies has been widely carried out in various academic realms, including transportation. This paper seeks to compare the instantaneous and longitudinal effectiveness of a traditional penalty-based congestion pricing strategy and an innovative Incentive-Based Traffic Demand Management (IBTDM) strategy using an online interactive laboratory experiment focused on departure time choice. We also investigate the social-economic phenomena of loss aversion and risk aversion. The experimental results show that penalties and rewards can both positively induce sustainable travel behavior. The stronger demand-shifting performance of the penalty-based strategy at first demonstrates that 'loss aversion' does exist in TDM, at least initially. However, this loss aversion weakens as the experiment continues, which verifies the myopic loss aversion theory. Moreover, risky decision-making in the gambling games proves the existence of risk seeking, which violates the 'certainty effect'. To overcome the disadvantage of laboratory experiment that participants need to accomplish the experiment all in once for considerably long time, an agent-based model is calibrated based on real participants' behavior to further verify the long-term effectiveness of penalties and rewards, and to verify the effectiveness of other optimized penalty/reward schemes. The simulated results based on the agent-based model indicate that the theoretical optimal penalty scheme performs better in general in congestion alleviation, while a more reasonable reward scheme that considers psychological factors can achieve the same effectiveness in terms of total system travel time reduction. The findings of this research can be used to guide the design of TDM strategies, and the behavioral data collection approach based on our laboratory experiment is portable for future studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yang完成签到,获得积分10
刚刚
mei发布了新的文献求助10
2秒前
周周完成签到,获得积分10
2秒前
xx给xx的求助进行了留言
2秒前
慕青应助max采纳,获得10
2秒前
小雨快跑完成签到,获得积分10
2秒前
ku发布了新的文献求助10
3秒前
3秒前
3秒前
桐夏发布了新的文献求助10
3秒前
4秒前
ordin完成签到,获得积分10
4秒前
4秒前
melon完成签到,获得积分10
4秒前
5秒前
cptytptp完成签到,获得积分10
5秒前
5秒前
所所应助吴彦祖采纳,获得10
7秒前
其奈公何发布了新的文献求助10
7秒前
ordin发布了新的文献求助10
7秒前
生动半青发布了新的文献求助10
7秒前
7秒前
8秒前
天使完成签到 ,获得积分10
8秒前
123发布了新的文献求助10
8秒前
优秀冰香完成签到,获得积分10
8秒前
李冬卿发布了新的文献求助10
8秒前
8秒前
8秒前
piggggggy完成签到,获得积分20
9秒前
jzmupyj发布了新的文献求助10
9秒前
10秒前
CodeCraft应助辛坦夫采纳,获得10
10秒前
CodeCraft应助呼啦呼啦采纳,获得10
10秒前
10秒前
科研通AI5应助想发sci采纳,获得10
10秒前
JamesPei应助愉快的小鸽子采纳,获得10
11秒前
ossantu发布了新的文献求助10
11秒前
SSFHGSCVI发布了新的文献求助10
12秒前
小胡完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Theory of Block Polymer Self-Assembly 750
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3514287
求助须知:如何正确求助?哪些是违规求助? 3096594
关于积分的说明 9232412
捐赠科研通 2791737
什么是DOI,文献DOI怎么找? 1532012
邀请新用户注册赠送积分活动 711733
科研通“疑难数据库(出版商)”最低求助积分说明 707012