A-PINN: Auxiliary physics informed neural networks for forward and inverse problems of nonlinear integro-differential equations

离散化 人工神经网络 非线性系统 偏微分方程 前馈神经网络 数学 积分方程 应用数学 反问题 计算机科学 数学优化 数学分析 人工智能 物理 量子力学
作者
Lei Yuan,Yi‐Qing Ni,Xiangyun Deng,Shuo Hao
出处
期刊:Journal of Computational Physics [Elsevier]
卷期号:462: 111260-111260 被引量:166
标识
DOI:10.1016/j.jcp.2022.111260
摘要

Physics informed neural networks (PINNs) are a novel deep learning paradigm primed for solving forward and inverse problems of nonlinear partial differential equations (PDEs). By embedding physical information delineated by PDEs in feedforward neural networks, PINNs are trained as surrogate models for approximate solution to the PDEs without need of label data. Due to the excellent capability of neural networks in describing complex relationships, a variety of PINN-based methods have been developed to solve different kinds of problems such as integer-order PDEs, fractional PDEs, stochastic PDEs and integro-differential equations (IDEs). However, for the state-of-the-art PINN methods in application to IDEs, integral discretization is a key prerequisite in order that IDEs can be transformed into ordinary differential equations (ODEs). However, integral discretization inevitably introduces discretization error and truncation error to the solution. In this study, we propose an auxiliary physics informed neural network (A-PINN) framework for solving forward and inverse problems of nonlinear IDEs. By defining auxiliary output variable(s) to represent the integral(s) in the governing equation and employing automatic differentiation of the auxiliary output to replace integral operator, the proposed A-PINN bypasses the limitation of integral discretization. Distinct from the neural network in the original PINN which only approximates the variables in the governing equation, in the proposed A-PINN framework, a multi-output neural network is constructed to simultaneously calculate the primary outputs and auxiliary outputs which respectively approximate the variables and integrals in the governing equation. Subsequently, the relationship between the primary outputs and auxiliary outputs is constrained by new output conditions in compliance with physical laws. By pursuing the first-order nonlinear Volterra IDE benchmark problem, we validate that the proposed A-PINN can obtain more accurate solution than the conventional PINN. We further demonstrate the good performance of A-PINN in solving the forward problems involving nonlinear Volterra IDEs system, nonlinear 2-dimensional Volterra IDE, nonlinear 10-dimensional Volterra IDE, and nonlinear Fredholm IDE. Finally, the A-PINN framework is implemented to solve the inverse problem of nonlinear IDEs and the results show that the unknown parameters can be satisfactorily discovered even with heavily noisy data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助玩命的雁丝采纳,获得10
1秒前
秋澄发布了新的文献求助10
1秒前
2秒前
科研通AI5应助潇潇微雨采纳,获得10
2秒前
科研通AI5应助潇潇微雨采纳,获得10
2秒前
爆米花应助潇潇微雨采纳,获得10
2秒前
Lucas应助潇潇微雨采纳,获得10
2秒前
meixinger完成签到,获得积分10
2秒前
wanci应助潇潇微雨采纳,获得10
2秒前
科研通AI5应助潇潇微雨采纳,获得10
2秒前
科研通AI5应助潇潇微雨采纳,获得10
2秒前
科研通AI5应助潇潇微雨采纳,获得10
2秒前
SYLH应助潇潇微雨采纳,获得10
3秒前
彭于晏应助yyyyy采纳,获得10
3秒前
荣枫完成签到,获得积分10
3秒前
4秒前
善学以致用应助SSS采纳,获得30
4秒前
HappyWang发布了新的文献求助10
4秒前
5秒前
6秒前
6秒前
悠悠完成签到,获得积分10
7秒前
阿水完成签到,获得积分20
8秒前
科研通AI5应助Hosea采纳,获得10
9秒前
9秒前
liuliu发布了新的文献求助20
9秒前
red发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
SYLH应助科研通管家采纳,获得10
11秒前
梁菡杨发布了新的文献求助10
11秒前
SYLH应助科研通管家采纳,获得10
11秒前
斯文败类应助科研通管家采纳,获得10
12秒前
12秒前
赘婿应助科研通管家采纳,获得10
12秒前
NexusExplorer应助魔幻筮采纳,获得10
12秒前
充电宝应助科研通管家采纳,获得20
12秒前
tanlpp发布了新的文献求助10
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3514812
求助须知:如何正确求助?哪些是违规求助? 3097140
关于积分的说明 9234298
捐赠科研通 2792136
什么是DOI,文献DOI怎么找? 1532287
邀请新用户注册赠送积分活动 711947
科研通“疑难数据库(出版商)”最低求助积分说明 707045