已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Diffusion Kernel Attention Network for Brain Disorder Classification.

计算机科学 人工智能 机器学习 变压器 核(代数)
作者
Jianjia Zhang,Luping Zhou,Lei Wang,Mengting Liu,Dinggang Shen
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:PP
标识
DOI:10.1109/tmi.2022.3170701
摘要

Constructing and analyzing functional brain networks (FBN) has become a promising approach to brain disorder classification. However, the conventional successive construct-and-analyze process would limit the performance due to the lack of interactions and adaptivity among the subtasks in the process. Recently, Transformer has demonstrated remarkable performance in various tasks, attributing to its effective attention mechanism in modeling complex feature relationships. In this paper, for the first time, we develop Transformer for integrated FBN modeling, analysis and brain disorder classification with rs-fMRI data by proposing a Diffusion Kernel Attention Network to address the specific challenges. Specifically, directly applying Transformer does not necessarily admit optimal performance in this task due to its extensive parameters in the attention module against the limited training samples usually available. Looking into this issue, we propose to use kernel attention to replace the original dot-product attention module in Transformer. This significantly reduces the number of parameters to train and thus alleviates the issue of small sample while introducing a non-linear attention mechanism to model complex functional connections. Another limit of Transformer for FBN applications is that it only considers pair-wise interactions between directly connected brain regions but ignores the important indirect connections. Therefore, we further explore diffusion process over the kernel attention to incorporate wider interactions among indirectly connected brain regions. Extensive experimental study is conducted on ADHD-200 data set for ADHD classification and on ADNI data set for Alzheimer's disease classification, and the results demonstrate the superior performance of the proposed method over the competing methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
了了发布了新的文献求助10
2秒前
科研花完成签到 ,获得积分10
3秒前
5秒前
斯文奇迹发布了新的文献求助10
6秒前
0000完成签到 ,获得积分10
7秒前
所所应助www采纳,获得10
7秒前
wackykao完成签到 ,获得积分10
8秒前
星辰大海应助落雨采纳,获得10
10秒前
Amazing发布了新的文献求助30
11秒前
NexusExplorer应助科研通管家采纳,获得10
12秒前
Wind应助科研通管家采纳,获得10
12秒前
所所应助科研通管家采纳,获得10
12秒前
orixero应助科研通管家采纳,获得10
12秒前
Wind应助科研通管家采纳,获得10
12秒前
CodeCraft应助科研通管家采纳,获得10
12秒前
小蘑菇应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得50
12秒前
奕雨完成签到,获得积分10
12秒前
善学以致用应助程洁素采纳,获得10
13秒前
16秒前
量子星尘发布了新的文献求助10
19秒前
慕青应助22222采纳,获得10
19秒前
20秒前
落雨发布了新的文献求助10
20秒前
羽雨完成签到 ,获得积分10
21秒前
Sdafah完成签到,获得积分10
22秒前
西瓜撞地球完成签到 ,获得积分10
24秒前
落雨完成签到,获得积分10
24秒前
小圭发布了新的文献求助10
25秒前
zd完成签到,获得积分10
25秒前
可爱的函函应助嘿嘿采纳,获得10
26秒前
26秒前
小二郎应助强健的长颈鹿采纳,获得10
28秒前
团宝妞宝完成签到,获得积分10
29秒前
29秒前
太阳花发布了新的文献求助10
31秒前
31秒前
22222发布了新的文献求助10
33秒前
无花果应助咯咯哒采纳,获得10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5663865
求助须知:如何正确求助?哪些是违规求助? 4853850
关于积分的说明 15106158
捐赠科研通 4822179
什么是DOI,文献DOI怎么找? 2581270
邀请新用户注册赠送积分活动 1535484
关于科研通互助平台的介绍 1493742