已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Diffusion Kernel Attention Network for Brain Disorder Classification.

计算机科学 人工智能 机器学习 变压器 核(代数)
作者
Jianjia Zhang,Luping Zhou,Lei Wang,Mengting Liu,Dinggang Shen
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:PP
标识
DOI:10.1109/tmi.2022.3170701
摘要

Constructing and analyzing functional brain networks (FBN) has become a promising approach to brain disorder classification. However, the conventional successive construct-and-analyze process would limit the performance due to the lack of interactions and adaptivity among the subtasks in the process. Recently, Transformer has demonstrated remarkable performance in various tasks, attributing to its effective attention mechanism in modeling complex feature relationships. In this paper, for the first time, we develop Transformer for integrated FBN modeling, analysis and brain disorder classification with rs-fMRI data by proposing a Diffusion Kernel Attention Network to address the specific challenges. Specifically, directly applying Transformer does not necessarily admit optimal performance in this task due to its extensive parameters in the attention module against the limited training samples usually available. Looking into this issue, we propose to use kernel attention to replace the original dot-product attention module in Transformer. This significantly reduces the number of parameters to train and thus alleviates the issue of small sample while introducing a non-linear attention mechanism to model complex functional connections. Another limit of Transformer for FBN applications is that it only considers pair-wise interactions between directly connected brain regions but ignores the important indirect connections. Therefore, we further explore diffusion process over the kernel attention to incorporate wider interactions among indirectly connected brain regions. Extensive experimental study is conducted on ADHD-200 data set for ADHD classification and on ADNI data set for Alzheimer's disease classification, and the results demonstrate the superior performance of the proposed method over the competing methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Cwx2020完成签到,获得积分10
1秒前
英俊的铭应助yuhan采纳,获得10
1秒前
语嘘嘘完成签到,获得积分10
1秒前
2秒前
McUltrman完成签到,获得积分10
2秒前
,。完成签到,获得积分10
3秒前
ltq发布了新的文献求助10
3秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
PCX发布了新的文献求助20
6秒前
虚心求学完成签到,获得积分10
6秒前
6秒前
二队淼队长完成签到,获得积分10
7秒前
Hello应助bukeshuo采纳,获得10
7秒前
yuhan完成签到,获得积分10
8秒前
领导范儿应助Rui采纳,获得10
8秒前
9秒前
大模型应助xiaomage采纳,获得10
9秒前
Lucas应助阳光彩虹小牛马采纳,获得10
10秒前
10秒前
11秒前
筱xiao完成签到 ,获得积分10
11秒前
完美世界应助Drjason采纳,获得10
12秒前
JamesPei应助夏子采纳,获得10
12秒前
yuhan发布了新的文献求助10
13秒前
14秒前
玻璃杯完成签到 ,获得积分10
14秒前
14秒前
15秒前
jpc完成签到,获得积分10
15秒前
16秒前
16秒前
xiaoxinbaba发布了新的文献求助10
17秒前
17秒前
无花果应助河鲸采纳,获得10
19秒前
刘明苏发布了新的文献求助10
19秒前
19秒前
20秒前
xiaomage发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5713824
求助须知:如何正确求助?哪些是违规求助? 5218287
关于积分的说明 15272000
捐赠科研通 4865463
什么是DOI,文献DOI怎么找? 2612154
邀请新用户注册赠送积分活动 1562352
关于科研通互助平台的介绍 1519480