Diffusion Kernel Attention Network for Brain Disorder Classification.

计算机科学 人工智能 机器学习 变压器 核(代数)
作者
Jianjia Zhang,Luping Zhou,Lei Wang,Mengting Liu,Dinggang Shen
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:PP
标识
DOI:10.1109/tmi.2022.3170701
摘要

Constructing and analyzing functional brain networks (FBN) has become a promising approach to brain disorder classification. However, the conventional successive construct-and-analyze process would limit the performance due to the lack of interactions and adaptivity among the subtasks in the process. Recently, Transformer has demonstrated remarkable performance in various tasks, attributing to its effective attention mechanism in modeling complex feature relationships. In this paper, for the first time, we develop Transformer for integrated FBN modeling, analysis and brain disorder classification with rs-fMRI data by proposing a Diffusion Kernel Attention Network to address the specific challenges. Specifically, directly applying Transformer does not necessarily admit optimal performance in this task due to its extensive parameters in the attention module against the limited training samples usually available. Looking into this issue, we propose to use kernel attention to replace the original dot-product attention module in Transformer. This significantly reduces the number of parameters to train and thus alleviates the issue of small sample while introducing a non-linear attention mechanism to model complex functional connections. Another limit of Transformer for FBN applications is that it only considers pair-wise interactions between directly connected brain regions but ignores the important indirect connections. Therefore, we further explore diffusion process over the kernel attention to incorporate wider interactions among indirectly connected brain regions. Extensive experimental study is conducted on ADHD-200 data set for ADHD classification and on ADNI data set for Alzheimer's disease classification, and the results demonstrate the superior performance of the proposed method over the competing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
李健应助爱听歌的向日葵采纳,获得10
2秒前
今后应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
烟花应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得80
2秒前
所所应助科研通管家采纳,获得20
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
Owen应助科研通管家采纳,获得30
3秒前
婷婷发布了新的文献求助10
3秒前
zzt完成签到,获得积分10
5秒前
张小汉发布了新的文献求助30
6秒前
二十四发布了新的文献求助10
6秒前
赘婿应助junzilan采纳,获得10
6秒前
FashionBoy应助勤恳的雨文采纳,获得10
6秒前
aaa完成签到,获得积分10
7秒前
8秒前
11111完成签到,获得积分20
9秒前
仔wang完成签到,获得积分10
9秒前
11秒前
忘羡222发布了新的文献求助20
11秒前
11秒前
温暖涫完成签到,获得积分10
13秒前
11111发布了新的文献求助10
13秒前
健忘的牛排完成签到,获得积分10
14秒前
wmmm完成签到,获得积分10
14秒前
Akim应助爱吃泡芙采纳,获得10
14秒前
老迟到的书雁完成签到 ,获得积分10
14秒前
14秒前
正经俠发布了新的文献求助10
15秒前
15秒前
16秒前
16秒前
学科共进完成签到,获得积分10
17秒前
百草27完成签到,获得积分10
17秒前
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824