Diffusion Kernel Attention Network for Brain Disorder Classification.

计算机科学 人工智能 机器学习 变压器 核(代数)
作者
Jianjia Zhang,Luping Zhou,Lei Wang,Mengting Liu,Dinggang Shen
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:PP
标识
DOI:10.1109/tmi.2022.3170701
摘要

Constructing and analyzing functional brain networks (FBN) has become a promising approach to brain disorder classification. However, the conventional successive construct-and-analyze process would limit the performance due to the lack of interactions and adaptivity among the subtasks in the process. Recently, Transformer has demonstrated remarkable performance in various tasks, attributing to its effective attention mechanism in modeling complex feature relationships. In this paper, for the first time, we develop Transformer for integrated FBN modeling, analysis and brain disorder classification with rs-fMRI data by proposing a Diffusion Kernel Attention Network to address the specific challenges. Specifically, directly applying Transformer does not necessarily admit optimal performance in this task due to its extensive parameters in the attention module against the limited training samples usually available. Looking into this issue, we propose to use kernel attention to replace the original dot-product attention module in Transformer. This significantly reduces the number of parameters to train and thus alleviates the issue of small sample while introducing a non-linear attention mechanism to model complex functional connections. Another limit of Transformer for FBN applications is that it only considers pair-wise interactions between directly connected brain regions but ignores the important indirect connections. Therefore, we further explore diffusion process over the kernel attention to incorporate wider interactions among indirectly connected brain regions. Extensive experimental study is conducted on ADHD-200 data set for ADHD classification and on ADNI data set for Alzheimer's disease classification, and the results demonstrate the superior performance of the proposed method over the competing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助wqw采纳,获得10
刚刚
1秒前
坚定岂愈发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
彭于晏应助农大彭于晏采纳,获得10
2秒前
3秒前
3秒前
优秀爆米花完成签到,获得积分10
4秒前
香蕉觅云应助听话的幼荷采纳,获得10
4秒前
4秒前
baekhyun发布了新的文献求助10
4秒前
5秒前
大意的羊发布了新的文献求助10
7秒前
7秒前
坚定岂愈完成签到,获得积分10
8秒前
情怀应助根决采纳,获得10
8秒前
8秒前
Qinjichao完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
10秒前
amongferns发布了新的文献求助10
11秒前
Owen应助来日方长采纳,获得10
11秒前
11秒前
NexusExplorer应助zhogwe采纳,获得10
12秒前
大胆石头发布了新的文献求助10
12秒前
FashionBoy应助温暖的纲采纳,获得200
12秒前
慕青应助甜甜小蜜蜂采纳,获得10
13秒前
13秒前
平常傲白发布了新的文献求助10
13秒前
14秒前
14秒前
14秒前
酷波er应助寻度采纳,获得10
15秒前
Xxxudi发布了新的文献求助10
16秒前
安详的雨兰完成签到 ,获得积分10
16秒前
volvoamg发布了新的文献求助10
17秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3153667
求助须知:如何正确求助?哪些是违规求助? 2804835
关于积分的说明 7861986
捐赠科研通 2462948
什么是DOI,文献DOI怎么找? 1311018
科研通“疑难数据库(出版商)”最低求助积分说明 629429
版权声明 601821