Diffusion Kernel Attention Network for Brain Disorder Classification.

计算机科学 人工智能 机器学习 变压器 核(代数)
作者
Jianjia Zhang,Luping Zhou,Lei Wang,Mengting Liu,Dinggang Shen
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:PP
标识
DOI:10.1109/tmi.2022.3170701
摘要

Constructing and analyzing functional brain networks (FBN) has become a promising approach to brain disorder classification. However, the conventional successive construct-and-analyze process would limit the performance due to the lack of interactions and adaptivity among the subtasks in the process. Recently, Transformer has demonstrated remarkable performance in various tasks, attributing to its effective attention mechanism in modeling complex feature relationships. In this paper, for the first time, we develop Transformer for integrated FBN modeling, analysis and brain disorder classification with rs-fMRI data by proposing a Diffusion Kernel Attention Network to address the specific challenges. Specifically, directly applying Transformer does not necessarily admit optimal performance in this task due to its extensive parameters in the attention module against the limited training samples usually available. Looking into this issue, we propose to use kernel attention to replace the original dot-product attention module in Transformer. This significantly reduces the number of parameters to train and thus alleviates the issue of small sample while introducing a non-linear attention mechanism to model complex functional connections. Another limit of Transformer for FBN applications is that it only considers pair-wise interactions between directly connected brain regions but ignores the important indirect connections. Therefore, we further explore diffusion process over the kernel attention to incorporate wider interactions among indirectly connected brain regions. Extensive experimental study is conducted on ADHD-200 data set for ADHD classification and on ADNI data set for Alzheimer's disease classification, and the results demonstrate the superior performance of the proposed method over the competing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yinshan完成签到 ,获得积分10
刚刚
完美世界应助李大洋采纳,获得10
1秒前
深情安青应助carbonhan采纳,获得10
2秒前
Hysen_L完成签到,获得积分10
2秒前
光亮的问凝完成签到 ,获得积分10
2秒前
疑夕发布了新的文献求助10
2秒前
魔幻的半莲完成签到 ,获得积分10
3秒前
斯文败类应助简单的仰采纳,获得10
4秒前
zhang完成签到,获得积分20
4秒前
5秒前
脑洞疼应助浮浮世世采纳,获得10
5秒前
6秒前
大模型应助schilling采纳,获得10
6秒前
7秒前
hhee完成签到 ,获得积分10
9秒前
yyyg发布了新的文献求助10
10秒前
11秒前
hui发布了新的文献求助10
11秒前
自由的风筝关注了科研通微信公众号
12秒前
12秒前
12秒前
14秒前
hui完成签到,获得积分10
16秒前
17秒前
打工仔完成签到 ,获得积分10
17秒前
carbonhan发布了新的文献求助10
17秒前
依灵完成签到,获得积分10
17秒前
梨花月应助天真的马里奥采纳,获得10
18秒前
陈文强完成签到,获得积分10
18秒前
18318933768完成签到,获得积分10
18秒前
科研通AI6应助yyyg采纳,获得10
20秒前
传奇3应助科研通管家采纳,获得10
20秒前
斯文败类应助科研通管家采纳,获得10
20秒前
烟花应助科研通管家采纳,获得10
20秒前
领导范儿应助科研通管家采纳,获得10
20秒前
核桃应助科研通管家采纳,获得50
20秒前
汉堡包应助科研通管家采纳,获得10
20秒前
完美世界应助科研通管家采纳,获得10
20秒前
FashionBoy应助科研通管家采纳,获得10
21秒前
打打应助科研通管家采纳,获得10
21秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
The Emotional Life of Organisations 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5215115
求助须知:如何正确求助?哪些是违规求助? 4390318
关于积分的说明 13669481
捐赠科研通 4251938
什么是DOI,文献DOI怎么找? 2332948
邀请新用户注册赠送积分活动 1330569
关于科研通互助平台的介绍 1284332