四苯乙烯
化学
分子内力
化学物理
激发态
分子
荧光团
光化学
电子结构
共价键
发光
光致发光
计算化学
荧光
原子物理学
聚集诱导发射
立体化学
有机化学
量子力学
材料科学
物理
光电子学
作者
Junkai Liu,Haoke Zhang,Lianrui Hu,Jun Wang,Jacky W. Y. Lam,Lluı́s Blancafort,Ben Zhong Tang
摘要
Electronic conjugation through covalent bonds is generally considered as the basis for the electronic transition of organic luminescent materials. Tetraphenylethylene (TPE), an efficient fluorophore with aggregation-induced emission character, fluoresces blue emission in the aggregate state, and such photoluminescence is always ascribed to the through-bond conjugation (TBC) among the four phenyl rings and the central C═C bond. However, in this work, systematic spectroscopic studies and DFT theoretical simulation reveal that the intramolecular through-space interaction (TSI) between two vicinal phenyl rings generates the bright blue emission in TPE but not the TBC effect. Furthermore, the evaluation of excited-state decay dynamics suggests the significance of photoinduced isomerization in the nonradiative decay of TPE in the solution state. More importantly, different from the traditional qualitative description for TSI, the quantitative elucidation of the TSI is realized through the atoms-in-molecules analysis; meanwhile, a theoretical solid-state model for TPE and other multirotor systems for studying the electronic configuration is preliminarily established. The mechanistic model of TSI delineated in this work provides a new strategy to design luminescent materials beyond the traditional theory of TBC and expands the quantum understanding of molecular behavior to the aggregate level.
科研通智能强力驱动
Strongly Powered by AbleSci AI