Countering Voltage Decay, Redox Sluggishness, and Calendering Incompatibility by Near‐Zero‐Strain Interphase in Lithium‐Rich, Manganese‐Based Layered Oxide Electrodes

材料科学 阴极 电化学 电解质 电极 相间 氧化物 锂(药物) 化学工程 复合材料 冶金 生物 工程类 内分泌学 物理化学 化学 医学 遗传学
作者
Weitao He,Chunxiao Zhang,Meiyu Wang,Bo Wei,Yuelei Zhu,Jianghua Wu,Chaoping Liang,Libao Chen,Peng Wang,Weifeng Wei
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:32 (29) 被引量:38
标识
DOI:10.1002/adfm.202200322
摘要

Abstract Lithium‐rich, manganese‐based layered oxides are considered one of the most valuable cathode materials for the next generation of high‐energy density lithium‐ion batteries (LIBs) for their high specific capacity and low cost. However, their practical implementation in LIBs is hindered by the rapid voltage/capacity decay on cycling and the long‐standing contradictions between redox kinetics and volumetric energy density due to their poor calendaring compatibility. Herein, a coherent near‐zero‐strain interphase is constructed on the grain boundaries of cathode secondary particles by infusing LiAlO 2 material through the reactive infiltration method (RIM). Theoretical calculations, multi‐scale characterizations, and electrochemical tests show that this coherent interphase with near‐zero‐strain feature upon electrochemical (de)lithiation inhibits volume changes of the lattice and structural degradation of cathode primary particles during cycling. More importantly, the ionically conductive LiAlO 2 nanolayer infiltrated in the grain boundaries of cathode secondary particles can not only promote the rapid Li + migration and act as a barrier to protect the material from the corrosion of the electrolyte but also effectively improve the mechanical strength of the cathode secondary particles. Collectedly, the LiAlO 2 ‐infiltrated cathode materials display superior electrochemical cyclability, enhanced rate capability, and industrial calendaring performance, marking a significant step toward commercial implementation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
留胡子的小甜瓜完成签到,获得积分20
刚刚
李健的小迷弟应助milkmore采纳,获得30
1秒前
彭于晏应助锂氧采纳,获得10
1秒前
小二郎应助AN采纳,获得10
2秒前
清秀迎松应助谷谷采纳,获得10
2秒前
cchen完成签到 ,获得积分10
2秒前
无私秋珊应助西门百招采纳,获得10
3秒前
沧海一兰完成签到,获得积分10
4秒前
浮游应助橘子采纳,获得10
4秒前
猫猫爱吃煎饼完成签到 ,获得积分10
4秒前
Orange应助咕噜咕噜采纳,获得10
5秒前
7秒前
rk发布了新的文献求助12
7秒前
8秒前
杨金城完成签到,获得积分10
8秒前
田园完成签到,获得积分10
8秒前
小蘑菇应助无限小松鼠采纳,获得10
8秒前
科研通AI6应助万慧采纳,获得100
9秒前
10秒前
狗尾巴草发布了新的文献求助10
11秒前
金毛上将完成签到,获得积分10
11秒前
12秒前
谷谷完成签到,获得积分20
12秒前
13秒前
13秒前
13秒前
充电宝应助Leah采纳,获得10
13秒前
爱吃姜的面条完成签到,获得积分10
14秒前
domingo发布了新的文献求助30
14秒前
沉默的靖儿完成签到 ,获得积分10
15秒前
wanci应助快乐小狗采纳,获得10
16秒前
卡卡光波完成签到,获得积分10
16秒前
虚心的老头完成签到,获得积分10
16秒前
Ava应助Orange采纳,获得10
16秒前
玄音完成签到,获得积分10
17秒前
zzw完成签到,获得积分10
18秒前
18秒前
20秒前
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5192038
求助须知:如何正确求助?哪些是违规求助? 4375147
关于积分的说明 13623731
捐赠科研通 4229284
什么是DOI,文献DOI怎么找? 2319783
邀请新用户注册赠送积分活动 1318375
关于科研通互助平台的介绍 1268503