Robustness analysis of interdependent networks under multiple-attacking strategies

相互依存的网络 级联故障 稳健性(进化) 相互依存 中间性中心性 计算机科学 脆弱性(计算) 复杂网络 拓扑(电路) 分布式计算 计算机安全 数学 统计 物理 中心性 组合数学 化学 电力系统 政治学 功率(物理) 生物化学 量子力学 万维网 基因 法学
作者
Yanli Gao,Shiming Chen,Sen Nie,Fei Ma,Junjie Guan
出处
期刊:Physica D: Nonlinear Phenomena [Elsevier]
卷期号:496: 495-504 被引量:32
标识
DOI:10.1016/j.physa.2017.12.085
摘要

The robustness of complex networks under attacks largely depends on the structure of a network and the nature of the attacks. Previous research on interdependent networks has focused on two types of initial attack: random attack and degree-based targeted attack. In this paper, a deliberate attack function is proposed, where six kinds of deliberate attacking strategies can be derived by adjusting the tunable parameters. Moreover, the robustness of four types of interdependent networks (BA–BA, ER–ER, BA–ER and ER–BA) with different coupling modes (random, positive and negative correlation) is evaluated under different attacking strategies. Interesting conclusions could be obtained. It can be found that the positive coupling mode can make the vulnerability of the interdependent network to be absolutely dependent on the most vulnerable sub-network under deliberate attacks, whereas random and negative coupling modes make the vulnerability of interdependent network to be mainly dependent on the being attacked sub-network. The robustness of interdependent network will be enhanced with the degree–degree correlation coefficient varying from positive to negative. Therefore, The negative coupling mode is relatively more optimal than others, which can substantially improve the robustness of the ER–ER network and ER–BA network. In terms of the attacking strategies on interdependent networks, the degree information of node is more valuable than the betweenness. In addition, we found a more efficient attacking strategy for each coupled interdependent network and proposed the corresponding protection strategy for suppressing cascading failure. Our results can be very useful for safety design and protection of interdependent networks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助霸气剑通采纳,获得10
1秒前
merlinsong发布了新的文献求助10
2秒前
2秒前
3秒前
花花发布了新的文献求助10
3秒前
Walker完成签到,获得积分10
3秒前
华仔应助落寞的采文采纳,获得10
4秒前
青鱼发布了新的文献求助10
4秒前
lignin完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
TIANEO完成签到,获得积分20
5秒前
cytomix完成签到,获得积分10
5秒前
orixero应助年轻的冰淇淋采纳,获得10
5秒前
清新王老吉完成签到,获得积分10
6秒前
7秒前
7秒前
量子星尘发布了新的文献求助30
7秒前
默默海露完成签到,获得积分20
7秒前
Vicky1111完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
9秒前
9秒前
9秒前
BUG完成签到,获得积分10
9秒前
邓施展关注了科研通微信公众号
9秒前
11秒前
Cloud发布了新的文献求助10
11秒前
万能图书馆应助布吉岛采纳,获得10
12秒前
12秒前
迅速翠风关注了科研通微信公众号
13秒前
青鱼发布了新的文献求助10
13秒前
青鱼发布了新的文献求助10
13秒前
青鱼发布了新的文献求助10
13秒前
青鱼发布了新的文献求助10
13秒前
青鱼发布了新的文献求助10
13秒前
简化为完成签到,获得积分10
13秒前
飞翔的鸣发布了新的文献求助10
13秒前
Sea_shark发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718021
求助须知:如何正确求助?哪些是违规求助? 5250051
关于积分的说明 15284272
捐赠科研通 4868198
什么是DOI,文献DOI怎么找? 2614063
邀请新用户注册赠送积分活动 1563973
关于科研通互助平台的介绍 1521425