Breaking the barriers: advances in acoustic functional materials

掩蔽 超材料 声学超材料 物理 声学 声能 工程物理 光学 声音(地理)
作者
Hao Ge,Min Yang,Chu Ma,Ming‐Hui Lu,Yanfeng Chen,Nicholas X. Fang,Ping Sheng
出处
期刊:National Science Review [Oxford University Press]
卷期号:5 (2): 159-182 被引量:148
标识
DOI:10.1093/nsr/nwx154
摘要

Abstract Acoustics is a classical field of study that has witnessed tremendous developments over the past 25 years. Driven by the novel acoustic effects underpinned by phononic crystals with periodic modulation of elastic building blocks in wavelength scale and acoustic metamaterials with localized resonant units in subwavelength scale, researchers in diverse disciplines of physics, mathematics, and engineering have pushed the boundary of possibilities beyond those long held as unbreakable limits. More recently, structure designs guided by the physics of graphene and topological electronic states of matter have further broadened the whole field of acoustic metamaterials by phenomena that reproduce the quantum effects classically. Use of active energy-gain components, directed by the parity–time reversal symmetry principle, has led to some previously unexpected wave characteristics. It is the intention of this review to trace historically these exciting developments, substantiated by brief accounts of the salient milestones. The latter can include, but are not limited to, zero/negative refraction, subwavelength imaging, sound cloaking, total sound absorption, metasurface and phase engineering, Dirac physics and topology-inspired acoustic engineering, non-Hermitian parity–time synthetic active metamaterials, and one-way propagation of sound waves. These developments may underpin the next generation of acoustic materials and devices, and offer new methods for sound manipulation, leading to exciting applications in noise reduction, imaging, sensing and navigation, as well as communications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小曹医生完成签到,获得积分10
刚刚
科研通AI6应助陈欣瑶采纳,获得10
刚刚
1秒前
跳跃的幼丝完成签到,获得积分10
1秒前
流沙完成签到,获得积分10
1秒前
2秒前
酷炫不斜完成签到 ,获得积分10
3秒前
3秒前
zero完成签到 ,获得积分10
3秒前
苏苏发布了新的文献求助10
3秒前
哪位发布了新的文献求助10
3秒前
123发布了新的文献求助10
3秒前
Ava应助lihuanmoon采纳,获得10
3秒前
大土豆子完成签到,获得积分10
4秒前
小事情完成签到,获得积分10
4秒前
刘旭阳发布了新的文献求助10
4秒前
SUNINE发布了新的文献求助10
4秒前
4秒前
波波完成签到,获得积分10
5秒前
6秒前
等不及完成签到,获得积分10
6秒前
6秒前
7秒前
yuanshl1985发布了新的文献求助10
7秒前
小熊发布了新的文献求助10
8秒前
niuniu完成签到 ,获得积分10
8秒前
8秒前
彭于晏应助麦兜采纳,获得10
8秒前
kaikai完成签到,获得积分10
9秒前
9秒前
LZY完成签到,获得积分10
9秒前
十八岁不想说话完成签到,获得积分10
9秒前
英俊的铭应助噗噗采纳,获得10
9秒前
9秒前
英俊的铭应助西蜀小吏采纳,获得10
10秒前
10秒前
怡然新筠完成签到,获得积分10
11秒前
冰可乐完成签到 ,获得积分10
12秒前
务实振家完成签到,获得积分20
13秒前
CodeCraft应助Luna_aaa采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648490
求助须知:如何正确求助?哪些是违规求助? 4775560
关于积分的说明 15044364
捐赠科研通 4807469
什么是DOI,文献DOI怎么找? 2570809
邀请新用户注册赠送积分活动 1527552
关于科研通互助平台的介绍 1486499