亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Absolute cosine-based SVM-RFE feature selection method for prostate histopathological grading

支持向量机 计算机科学 模式识别(心理学) 人工智能 特征选择 分级(工程) 特征(语言学) 机器学习 语言学 工程类 哲学 土木工程
作者
Shahnorbanun Sahran,Dheeb Albashish,Azizi Abdullah,Nordashima Abd Shukor,Suria Hayati Md Pauzi
出处
期刊:Artificial Intelligence in Medicine [Elsevier]
卷期号:87: 78-90 被引量:73
标识
DOI:10.1016/j.artmed.2018.04.002
摘要

Feature selection (FS) methods are widely used in grading and diagnosing prostate histopathological images. In this context, FS is based on the texture features obtained from the lumen, nuclei, cytoplasm and stroma, all of which are important tissue components. However, it is difficult to represent the high-dimensional textures of these tissue components. To solve this problem, we propose a new FS method that enables the selection of features with minimal redundancy in the tissue components.We categorise tissue images based on the texture of individual tissue components via the construction of a single classifier and also construct an ensemble learning model by merging the values obtained by each classifier. Another issue that arises is overfitting due to the high-dimensional texture of individual tissue components. We propose a new FS method, SVM-RFE(AC), that integrates a Support Vector Machine-Recursive Feature Elimination (SVM-RFE) embedded procedure with an absolute cosine (AC) filter method to prevent redundancy in the selected features of the SV-RFE and an unoptimised classifier in the AC.We conducted experiments on H&E histopathological prostate and colon cancer images with respect to three prostate classifications, namely benign vs. grade 3, benign vs. grade 4 and grade 3 vs. grade 4. The colon benchmark dataset requires a distinction between grades 1 and 2, which are the most difficult cases to distinguish in the colon domain. The results obtained by both the single and ensemble classification models (which uses the product rule as its merging method) confirm that the proposed SVM-RFE(AC) is superior to the other SVM and SVM-RFE-based methods.We developed an FS method based on SVM-RFE and AC and successfully showed that its use enabled the identification of the most crucial texture feature of each tissue component. Thus, it makes possible the distinction between multiple Gleason grades (e.g. grade 3 vs. grade 4) and its performance is far superior to other reported FS methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
獐子岛在逃扇贝完成签到,获得积分20
16秒前
搜集达人应助凶狠的秀发采纳,获得10
22秒前
ruiruirui完成签到 ,获得积分10
26秒前
空城驳回了wanci应助
29秒前
38秒前
Cmqq发布了新的文献求助10
44秒前
qqq完成签到 ,获得积分10
51秒前
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
小白加油完成签到 ,获得积分10
1分钟前
1分钟前
又声完成签到,获得积分10
1分钟前
xiha西希完成签到,获得积分10
1分钟前
pleiotropy完成签到 ,获得积分10
1分钟前
Ferry完成签到,获得积分10
1分钟前
1分钟前
电量过低完成签到 ,获得积分10
1分钟前
1分钟前
隐形曼青应助Seeking采纳,获得10
1分钟前
yoga发布了新的文献求助10
2分钟前
酷波er应助卿筠采纳,获得10
2分钟前
乐乐应助Cmqq采纳,获得10
2分钟前
2分钟前
Seeking发布了新的文献求助10
2分钟前
2分钟前
2分钟前
Cmqq发布了新的文献求助10
2分钟前
yummy发布了新的文献求助10
2分钟前
浪里白条完成签到,获得积分10
2分钟前
jml完成签到,获得积分10
2分钟前
汉堡包应助调皮友安采纳,获得10
2分钟前
天天快乐应助Cmqq采纳,获得10
2分钟前
无情的瑾瑜完成签到,获得积分10
2分钟前
机智夜梦发布了新的文献求助200
3分钟前
BowieHuang应助科研通管家采纳,获得10
3分钟前
BowieHuang应助科研通管家采纳,获得10
3分钟前
今后应助科研通管家采纳,获得10
3分钟前
BowieHuang应助科研通管家采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599776
求助须知:如何正确求助?哪些是违规求助? 4685483
关于积分的说明 14838528
捐赠科研通 4670394
什么是DOI,文献DOI怎么找? 2538191
邀请新用户注册赠送积分活动 1505527
关于科研通互助平台的介绍 1470904