已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Absolute cosine-based SVM-RFE feature selection method for prostate histopathological grading

支持向量机 计算机科学 模式识别(心理学) 人工智能 特征选择 分级(工程) 特征(语言学) 机器学习 语言学 工程类 哲学 土木工程
作者
Shahnorbanun Sahran,Dheeb Albashish,Azizi Abdullah,Nordashima Abd Shukor,Suria Hayati Md Pauzi
出处
期刊:Artificial Intelligence in Medicine [Elsevier]
卷期号:87: 78-90 被引量:73
标识
DOI:10.1016/j.artmed.2018.04.002
摘要

Feature selection (FS) methods are widely used in grading and diagnosing prostate histopathological images. In this context, FS is based on the texture features obtained from the lumen, nuclei, cytoplasm and stroma, all of which are important tissue components. However, it is difficult to represent the high-dimensional textures of these tissue components. To solve this problem, we propose a new FS method that enables the selection of features with minimal redundancy in the tissue components.We categorise tissue images based on the texture of individual tissue components via the construction of a single classifier and also construct an ensemble learning model by merging the values obtained by each classifier. Another issue that arises is overfitting due to the high-dimensional texture of individual tissue components. We propose a new FS method, SVM-RFE(AC), that integrates a Support Vector Machine-Recursive Feature Elimination (SVM-RFE) embedded procedure with an absolute cosine (AC) filter method to prevent redundancy in the selected features of the SV-RFE and an unoptimised classifier in the AC.We conducted experiments on H&E histopathological prostate and colon cancer images with respect to three prostate classifications, namely benign vs. grade 3, benign vs. grade 4 and grade 3 vs. grade 4. The colon benchmark dataset requires a distinction between grades 1 and 2, which are the most difficult cases to distinguish in the colon domain. The results obtained by both the single and ensemble classification models (which uses the product rule as its merging method) confirm that the proposed SVM-RFE(AC) is superior to the other SVM and SVM-RFE-based methods.We developed an FS method based on SVM-RFE and AC and successfully showed that its use enabled the identification of the most crucial texture feature of each tissue component. Thus, it makes possible the distinction between multiple Gleason grades (e.g. grade 3 vs. grade 4) and its performance is far superior to other reported FS methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无限白羊发布了新的文献求助10
刚刚
1秒前
yuanyuan完成签到,获得积分10
2秒前
4秒前
大模型应助复方蛋酥卷采纳,获得20
5秒前
5秒前
6秒前
英姑应助留胡子的大树采纳,获得10
7秒前
十六夜彦完成签到,获得积分10
7秒前
浮光发布了新的文献求助10
8秒前
菠萝完成签到 ,获得积分0
9秒前
10秒前
12秒前
LA发布了新的文献求助20
14秒前
香蕉觅云应助李国铭采纳,获得10
14秒前
15秒前
orcusyoung发布了新的文献求助10
16秒前
16秒前
在水一方应助DrDaiJune采纳,获得10
16秒前
Takahara2000完成签到,获得积分10
17秒前
斯文怀寒发布了新的文献求助10
18秒前
18秒前
熊猫完成签到,获得积分0
18秒前
21秒前
21秒前
王干完成签到 ,获得积分10
22秒前
灵巧的幻竹完成签到,获得积分10
24秒前
26秒前
科研通AI6应助linliqing采纳,获得10
27秒前
31秒前
默默采枫完成签到,获得积分20
32秒前
机灵的天玉完成签到 ,获得积分10
32秒前
总是很简单完成签到 ,获得积分10
33秒前
34秒前
默默采枫发布了新的文献求助30
36秒前
36秒前
科研通AI2S应助obito采纳,获得10
38秒前
Zhang完成签到 ,获得积分10
38秒前
梓雨关注了科研通微信公众号
38秒前
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
复杂系统建模与弹性模型研究 2000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
睡眠呼吸障碍治疗学 600
Input 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5488170
求助须知:如何正确求助?哪些是违规求助? 4587174
关于积分的说明 14412856
捐赠科研通 4518407
什么是DOI,文献DOI怎么找? 2475741
邀请新用户注册赠送积分活动 1461367
关于科研通互助平台的介绍 1434263