亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Absolute cosine-based SVM-RFE feature selection method for prostate histopathological grading

支持向量机 计算机科学 模式识别(心理学) 人工智能 特征选择 分级(工程) 特征(语言学) 机器学习 语言学 工程类 哲学 土木工程
作者
Shahnorbanun Sahran,Dheeb Albashish,Azizi Abdullah,Nordashima Abd Shukor,Suria Hayati Md Pauzi
出处
期刊:Artificial Intelligence in Medicine [Elsevier]
卷期号:87: 78-90 被引量:73
标识
DOI:10.1016/j.artmed.2018.04.002
摘要

Feature selection (FS) methods are widely used in grading and diagnosing prostate histopathological images. In this context, FS is based on the texture features obtained from the lumen, nuclei, cytoplasm and stroma, all of which are important tissue components. However, it is difficult to represent the high-dimensional textures of these tissue components. To solve this problem, we propose a new FS method that enables the selection of features with minimal redundancy in the tissue components.We categorise tissue images based on the texture of individual tissue components via the construction of a single classifier and also construct an ensemble learning model by merging the values obtained by each classifier. Another issue that arises is overfitting due to the high-dimensional texture of individual tissue components. We propose a new FS method, SVM-RFE(AC), that integrates a Support Vector Machine-Recursive Feature Elimination (SVM-RFE) embedded procedure with an absolute cosine (AC) filter method to prevent redundancy in the selected features of the SV-RFE and an unoptimised classifier in the AC.We conducted experiments on H&E histopathological prostate and colon cancer images with respect to three prostate classifications, namely benign vs. grade 3, benign vs. grade 4 and grade 3 vs. grade 4. The colon benchmark dataset requires a distinction between grades 1 and 2, which are the most difficult cases to distinguish in the colon domain. The results obtained by both the single and ensemble classification models (which uses the product rule as its merging method) confirm that the proposed SVM-RFE(AC) is superior to the other SVM and SVM-RFE-based methods.We developed an FS method based on SVM-RFE and AC and successfully showed that its use enabled the identification of the most crucial texture feature of each tissue component. Thus, it makes possible the distinction between multiple Gleason grades (e.g. grade 3 vs. grade 4) and its performance is far superior to other reported FS methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
22秒前
胖小羊完成签到 ,获得积分10
37秒前
38秒前
采薇发布了新的文献求助10
45秒前
Utopia1632完成签到,获得积分10
1分钟前
小鸡完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
知悉发布了新的文献求助10
1分钟前
ding应助科研通管家采纳,获得10
1分钟前
三岁应助ceeray23采纳,获得20
1分钟前
2分钟前
oleskarabach发布了新的文献求助10
2分钟前
zly完成签到 ,获得积分0
2分钟前
Nilnael发布了新的文献求助10
2分钟前
浮游应助ceeray23采纳,获得20
2分钟前
HaCat完成签到,获得积分10
2分钟前
2分钟前
2分钟前
采薇发布了新的文献求助10
2分钟前
yuan完成签到,获得积分10
2分钟前
小蘑菇应助jing采纳,获得10
2分钟前
搜集达人应助Luke采纳,获得10
2分钟前
3分钟前
3分钟前
jing发布了新的文献求助10
3分钟前
Demi_Ming完成签到,获得积分10
3分钟前
程小柒完成签到 ,获得积分10
3分钟前
Demi_Ming关注了科研通微信公众号
3分钟前
烟花应助科研通管家采纳,获得10
3分钟前
坚强的秋白完成签到,获得积分10
4分钟前
xiawanren00完成签到,获得积分10
5分钟前
5分钟前
采薇发布了新的文献求助10
5分钟前
Jasper应助科研通管家采纳,获得10
5分钟前
无极微光应助科研通管家采纳,获得20
5分钟前
任性云朵完成签到 ,获得积分10
6分钟前
大模型应助jing采纳,获得10
6分钟前
6分钟前
奋斗一刀完成签到,获得积分20
6分钟前
高分求助中
From Victimization to Aggression 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644846
求助须知:如何正确求助?哪些是违规求助? 4765929
关于积分的说明 15025735
捐赠科研通 4803180
什么是DOI,文献DOI怎么找? 2568067
邀请新用户注册赠送积分活动 1525533
关于科研通互助平台的介绍 1485079