Absolute cosine-based SVM-RFE feature selection method for prostate histopathological grading

支持向量机 计算机科学 模式识别(心理学) 人工智能 特征选择 分级(工程) 特征(语言学) 机器学习 语言学 工程类 哲学 土木工程
作者
Shahnorbanun Sahran,Dheeb Albashish,Azizi Abdullah,Nordashima Abd Shukor,Suria Hayati Md Pauzi
出处
期刊:Artificial Intelligence in Medicine [Elsevier]
卷期号:87: 78-90 被引量:73
标识
DOI:10.1016/j.artmed.2018.04.002
摘要

Feature selection (FS) methods are widely used in grading and diagnosing prostate histopathological images. In this context, FS is based on the texture features obtained from the lumen, nuclei, cytoplasm and stroma, all of which are important tissue components. However, it is difficult to represent the high-dimensional textures of these tissue components. To solve this problem, we propose a new FS method that enables the selection of features with minimal redundancy in the tissue components.We categorise tissue images based on the texture of individual tissue components via the construction of a single classifier and also construct an ensemble learning model by merging the values obtained by each classifier. Another issue that arises is overfitting due to the high-dimensional texture of individual tissue components. We propose a new FS method, SVM-RFE(AC), that integrates a Support Vector Machine-Recursive Feature Elimination (SVM-RFE) embedded procedure with an absolute cosine (AC) filter method to prevent redundancy in the selected features of the SV-RFE and an unoptimised classifier in the AC.We conducted experiments on H&E histopathological prostate and colon cancer images with respect to three prostate classifications, namely benign vs. grade 3, benign vs. grade 4 and grade 3 vs. grade 4. The colon benchmark dataset requires a distinction between grades 1 and 2, which are the most difficult cases to distinguish in the colon domain. The results obtained by both the single and ensemble classification models (which uses the product rule as its merging method) confirm that the proposed SVM-RFE(AC) is superior to the other SVM and SVM-RFE-based methods.We developed an FS method based on SVM-RFE and AC and successfully showed that its use enabled the identification of the most crucial texture feature of each tissue component. Thus, it makes possible the distinction between multiple Gleason grades (e.g. grade 3 vs. grade 4) and its performance is far superior to other reported FS methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
猪猪hero应助爱听歌的老九采纳,获得10
1秒前
1秒前
Jasper应助很难过采纳,获得10
1秒前
黎呀发布了新的文献求助10
1秒前
难过剑成完成签到,获得积分10
1秒前
堇妗发布了新的文献求助30
1秒前
FuuKa完成签到,获得积分10
2秒前
乘凉完成签到,获得积分10
2秒前
烟花应助Bowen Chu采纳,获得10
2秒前
Donker发布了新的文献求助10
3秒前
linzhi_发布了新的文献求助10
3秒前
吕yj发布了新的文献求助10
3秒前
科研通AI6应助庄冬丽采纳,获得10
3秒前
慕子默发布了新的文献求助10
3秒前
zhucan应助龙井茶采纳,获得10
3秒前
lbw完成签到 ,获得积分10
4秒前
4秒前
4秒前
梦想成神完成签到,获得积分20
4秒前
小马甲应助qd采纳,获得10
4秒前
我需要文献完成签到,获得积分10
4秒前
今后应助yu采纳,获得10
4秒前
薄荷味发布了新的文献求助10
4秒前
冰菱发布了新的文献求助10
5秒前
Zxj发布了新的文献求助10
5秒前
呱呱完成签到 ,获得积分10
5秒前
6秒前
星先生发布了新的文献求助10
6秒前
6秒前
7秒前
活力谷菱发布了新的文献求助10
7秒前
8秒前
zhenglingying发布了新的文献求助10
8秒前
8秒前
ZS-发布了新的文献求助10
8秒前
8秒前
Goldfish完成签到,获得积分10
8秒前
5U完成签到,获得积分10
8秒前
悠悠发布了新的文献求助10
8秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5619979
求助须知:如何正确求助?哪些是违规求助? 4704479
关于积分的说明 14928024
捐赠科研通 4760640
什么是DOI,文献DOI怎么找? 2550712
邀请新用户注册赠送积分活动 1513458
关于科研通互助平台的介绍 1474498