Absolute cosine-based SVM-RFE feature selection method for prostate histopathological grading

支持向量机 计算机科学 模式识别(心理学) 人工智能 特征选择 分级(工程) 特征(语言学) 机器学习 语言学 哲学 土木工程 工程类
作者
Shahnorbanun Sahran,Dheeb Albashish,Azizi Abdullah,Nordashima Abd Shukor,Suria Hayati Md Pauzi
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:87: 78-90 被引量:73
标识
DOI:10.1016/j.artmed.2018.04.002
摘要

Feature selection (FS) methods are widely used in grading and diagnosing prostate histopathological images. In this context, FS is based on the texture features obtained from the lumen, nuclei, cytoplasm and stroma, all of which are important tissue components. However, it is difficult to represent the high-dimensional textures of these tissue components. To solve this problem, we propose a new FS method that enables the selection of features with minimal redundancy in the tissue components.We categorise tissue images based on the texture of individual tissue components via the construction of a single classifier and also construct an ensemble learning model by merging the values obtained by each classifier. Another issue that arises is overfitting due to the high-dimensional texture of individual tissue components. We propose a new FS method, SVM-RFE(AC), that integrates a Support Vector Machine-Recursive Feature Elimination (SVM-RFE) embedded procedure with an absolute cosine (AC) filter method to prevent redundancy in the selected features of the SV-RFE and an unoptimised classifier in the AC.We conducted experiments on H&E histopathological prostate and colon cancer images with respect to three prostate classifications, namely benign vs. grade 3, benign vs. grade 4 and grade 3 vs. grade 4. The colon benchmark dataset requires a distinction between grades 1 and 2, which are the most difficult cases to distinguish in the colon domain. The results obtained by both the single and ensemble classification models (which uses the product rule as its merging method) confirm that the proposed SVM-RFE(AC) is superior to the other SVM and SVM-RFE-based methods.We developed an FS method based on SVM-RFE and AC and successfully showed that its use enabled the identification of the most crucial texture feature of each tissue component. Thus, it makes possible the distinction between multiple Gleason grades (e.g. grade 3 vs. grade 4) and its performance is far superior to other reported FS methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
刚刚
SilentStorm完成签到,获得积分10
1秒前
太阳发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
3秒前
火山暴涨球技完成签到,获得积分10
3秒前
zx598376321完成签到,获得积分10
3秒前
3秒前
emmmmmq完成签到,获得积分10
3秒前
lie列完成签到,获得积分20
3秒前
哭泣的吐司完成签到,获得积分10
3秒前
Owen应助打工人一枚采纳,获得10
4秒前
揚Young完成签到,获得积分10
4秒前
东风徐来完成签到,获得积分10
4秒前
luhui完成签到,获得积分20
4秒前
传统的青关注了科研通微信公众号
4秒前
cc完成签到,获得积分10
5秒前
5秒前
bkagyin应助LongY采纳,获得10
5秒前
5秒前
5秒前
carly发布了新的文献求助10
5秒前
caocao发布了新的文献求助10
5秒前
meimei完成签到,获得积分10
5秒前
晓世完成签到,获得积分10
6秒前
隐形曼青应助科研通管家采纳,获得10
6秒前
6秒前
64658应助科研通管家采纳,获得10
6秒前
王子璇发布了新的文献求助30
6秒前
wanci应助科研通管家采纳,获得10
6秒前
tk完成签到,获得积分10
6秒前
nieqie应助科研通管家采纳,获得10
6秒前
Zx_1993应助科研通管家采纳,获得20
6秒前
领导范儿应助科研通管家采纳,获得10
6秒前
共享精神应助科研通管家采纳,获得10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
A Modern Guide to the Economics of Crime 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5269562
求助须知:如何正确求助?哪些是违规求助? 4427995
关于积分的说明 13781921
捐赠科研通 4305390
什么是DOI,文献DOI怎么找? 2362762
邀请新用户注册赠送积分活动 1358427
关于科研通互助平台的介绍 1321122