Absolute cosine-based SVM-RFE feature selection method for prostate histopathological grading

支持向量机 计算机科学 模式识别(心理学) 人工智能 特征选择 分级(工程) 特征(语言学) 机器学习 语言学 哲学 土木工程 工程类
作者
Shahnorbanun Sahran,Dheeb Albashish,Azizi Abdullah,Nordashima Abd Shukor,Suria Hayati Md Pauzi
出处
期刊:Artificial Intelligence in Medicine [Elsevier]
卷期号:87: 78-90 被引量:73
标识
DOI:10.1016/j.artmed.2018.04.002
摘要

Feature selection (FS) methods are widely used in grading and diagnosing prostate histopathological images. In this context, FS is based on the texture features obtained from the lumen, nuclei, cytoplasm and stroma, all of which are important tissue components. However, it is difficult to represent the high-dimensional textures of these tissue components. To solve this problem, we propose a new FS method that enables the selection of features with minimal redundancy in the tissue components.We categorise tissue images based on the texture of individual tissue components via the construction of a single classifier and also construct an ensemble learning model by merging the values obtained by each classifier. Another issue that arises is overfitting due to the high-dimensional texture of individual tissue components. We propose a new FS method, SVM-RFE(AC), that integrates a Support Vector Machine-Recursive Feature Elimination (SVM-RFE) embedded procedure with an absolute cosine (AC) filter method to prevent redundancy in the selected features of the SV-RFE and an unoptimised classifier in the AC.We conducted experiments on H&E histopathological prostate and colon cancer images with respect to three prostate classifications, namely benign vs. grade 3, benign vs. grade 4 and grade 3 vs. grade 4. The colon benchmark dataset requires a distinction between grades 1 and 2, which are the most difficult cases to distinguish in the colon domain. The results obtained by both the single and ensemble classification models (which uses the product rule as its merging method) confirm that the proposed SVM-RFE(AC) is superior to the other SVM and SVM-RFE-based methods.We developed an FS method based on SVM-RFE and AC and successfully showed that its use enabled the identification of the most crucial texture feature of each tissue component. Thus, it makes possible the distinction between multiple Gleason grades (e.g. grade 3 vs. grade 4) and its performance is far superior to other reported FS methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wenhao发布了新的文献求助10
2秒前
认真迎梦完成签到,获得积分10
2秒前
2秒前
outman完成签到,获得积分10
2秒前
小麻花发布了新的文献求助10
3秒前
tcc发布了新的文献求助10
4秒前
Pf1314完成签到,获得积分10
4秒前
6秒前
隐形曼青应助Str0n采纳,获得10
7秒前
呆萌背包发布了新的文献求助10
7秒前
abc发布了新的文献求助10
9秒前
8R60d8应助naranjaaa采纳,获得10
10秒前
10秒前
11秒前
刺猬完成签到,获得积分10
11秒前
13秒前
充电宝应助abc采纳,获得10
13秒前
鱼咬羊发布了新的文献求助10
14秒前
那就来吧发布了新的文献求助10
16秒前
Hello应助小麻花采纳,获得10
17秒前
ymy123发布了新的文献求助10
17秒前
WZH发布了新的文献求助10
18秒前
peiyy完成签到,获得积分10
21秒前
925完成签到,获得积分10
21秒前
25秒前
28秒前
赘婿应助酷炫灵安采纳,获得10
28秒前
英勇的书瑶完成签到,获得积分20
28秒前
29秒前
奋斗的夜山完成签到 ,获得积分10
29秒前
廖无极完成签到 ,获得积分10
29秒前
Ding-Ding完成签到,获得积分10
30秒前
925完成签到,获得积分10
32秒前
35秒前
多情的续发布了新的文献求助10
36秒前
芒果完成签到,获得积分10
36秒前
科研通AI2S应助gx采纳,获得10
36秒前
英俊的铭应助纯真橘子采纳,获得30
36秒前
壮观冬寒完成签到,获得积分20
36秒前
冬弟发布了新的文献求助10
36秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164337
求助须知:如何正确求助?哪些是违规求助? 2815185
关于积分的说明 7907938
捐赠科研通 2474745
什么是DOI,文献DOI怎么找? 1317642
科研通“疑难数据库(出版商)”最低求助积分说明 631915
版权声明 602234