清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Absolute cosine-based SVM-RFE feature selection method for prostate histopathological grading

支持向量机 计算机科学 模式识别(心理学) 人工智能 特征选择 分级(工程) 特征(语言学) 机器学习 语言学 哲学 土木工程 工程类
作者
Shahnorbanun Sahran,Dheeb Albashish,Azizi Abdullah,Nordashima Abd Shukor,Suria Hayati Md Pauzi
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:87: 78-90 被引量:73
标识
DOI:10.1016/j.artmed.2018.04.002
摘要

Feature selection (FS) methods are widely used in grading and diagnosing prostate histopathological images. In this context, FS is based on the texture features obtained from the lumen, nuclei, cytoplasm and stroma, all of which are important tissue components. However, it is difficult to represent the high-dimensional textures of these tissue components. To solve this problem, we propose a new FS method that enables the selection of features with minimal redundancy in the tissue components.We categorise tissue images based on the texture of individual tissue components via the construction of a single classifier and also construct an ensemble learning model by merging the values obtained by each classifier. Another issue that arises is overfitting due to the high-dimensional texture of individual tissue components. We propose a new FS method, SVM-RFE(AC), that integrates a Support Vector Machine-Recursive Feature Elimination (SVM-RFE) embedded procedure with an absolute cosine (AC) filter method to prevent redundancy in the selected features of the SV-RFE and an unoptimised classifier in the AC.We conducted experiments on H&E histopathological prostate and colon cancer images with respect to three prostate classifications, namely benign vs. grade 3, benign vs. grade 4 and grade 3 vs. grade 4. The colon benchmark dataset requires a distinction between grades 1 and 2, which are the most difficult cases to distinguish in the colon domain. The results obtained by both the single and ensemble classification models (which uses the product rule as its merging method) confirm that the proposed SVM-RFE(AC) is superior to the other SVM and SVM-RFE-based methods.We developed an FS method based on SVM-RFE and AC and successfully showed that its use enabled the identification of the most crucial texture feature of each tissue component. Thus, it makes possible the distinction between multiple Gleason grades (e.g. grade 3 vs. grade 4) and its performance is far superior to other reported FS methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yang完成签到 ,获得积分10
2秒前
xianyaoz完成签到 ,获得积分0
2秒前
11秒前
Jasper应助无限的以亦采纳,获得10
12秒前
大方的荟完成签到,获得积分10
23秒前
小小王完成签到 ,获得积分10
26秒前
30秒前
gao完成签到 ,获得积分10
32秒前
张wx_100完成签到,获得积分10
32秒前
青雉流云完成签到,获得积分20
34秒前
风中的蜜蜂完成签到,获得积分10
35秒前
36秒前
滕皓轩完成签到 ,获得积分20
38秒前
航行天下完成签到 ,获得积分10
41秒前
开心夏旋完成签到 ,获得积分10
45秒前
资白玉完成签到 ,获得积分0
45秒前
聪明的泡面完成签到 ,获得积分10
46秒前
大轩完成签到 ,获得积分10
54秒前
科研通AI2S应助科研通管家采纳,获得10
56秒前
科研通AI2S应助科研通管家采纳,获得10
56秒前
科研通AI5应助科研通管家采纳,获得10
56秒前
Kevin发布了新的文献求助10
1分钟前
violetlishu完成签到 ,获得积分10
1分钟前
1分钟前
干饭大王应助Echo_1995采纳,获得10
1分钟前
纯真的梦竹完成签到,获得积分10
1分钟前
Gary完成签到 ,获得积分10
1分钟前
wang5945完成签到 ,获得积分10
1分钟前
racill完成签到 ,获得积分10
1分钟前
踏实的南琴完成签到 ,获得积分10
1分钟前
fkwwdamocles完成签到,获得积分10
1分钟前
tyro完成签到,获得积分10
1分钟前
意境完成签到 ,获得积分10
1分钟前
husky完成签到,获得积分10
1分钟前
natsu401完成签到 ,获得积分10
2分钟前
jibenkun完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968543
求助须知:如何正确求助?哪些是违规求助? 3513358
关于积分的说明 11167312
捐赠科研通 3248700
什么是DOI,文献DOI怎么找? 1794453
邀请新用户注册赠送积分活动 875030
科研通“疑难数据库(出版商)”最低求助积分说明 804664