超级电容器
材料科学
分散性
电容
电化学
复合数
化学工程
电解质
电极
退火(玻璃)
功率密度
纳米技术
电流密度
法拉第效率
复合材料
化学
高分子化学
功率(物理)
物理
工程类
物理化学
量子力学
作者
You Zhou,Li Ma,Mengyu Gan,Menghan Ye,Xiurong Li,Yanfang Zhai,Fabing Yan,Feifei Cao
标识
DOI:10.1016/j.apsusc.2018.03.049
摘要
The monodisperse MnO2@NiCo2O4 core/shell nanospheres for good-performance supercapacitors are designed and synthesized by a two-step solution-based method and a simple post annealing process. In the composite, both MnO2 (the "core") and NiCo2O4 (the "shell") are formed by the accumulation of nanoflakes. Thus, nearly all the core/shell nanoflakes are highly opened and accessible to electrolyte, making them give full play to the Faradaic reaction. Our results demonstrate that the composite electrode exhibits desirable pseudocapacitive behaviors with higher specific capacitance (1127.27 F g−1 at a current density of 1 A g−1), better rate capability (81.0% from 1 to 16 A g−1) and superior cycling stability (actually 126.8% capacitance retention after 1000 cycles and only 3.7% loss after 10,000 cycles at 10 A g−1) in 3 M KOH aqueous solution. Moreover, it offers the excellent specific energy density of 26.6 Wh kg−1 at specific power density of 800 W kg−1. The present MnO2@NiCo2O4 core/shell nanospheres with remarkable electrochemical properties are considered as potential electrode materials for the next generation supercapacitors.
科研通智能强力驱动
Strongly Powered by AbleSci AI