Stability of ARDS subphenotypes over time in two randomised controlled trials

急性呼吸窘迫综合征 医学 背景(考古学) 潜在类模型 临床试验 随机对照试验 苦恼 内科学 统计 临床心理学 数学 生物 古生物学
作者
Kevin Delucchi,Katie R. Famous,Lorraine B. Ware,Polly E. Parsons,Bruce Thompson,Carolyn S. Calfee
出处
期刊:Thorax [BMJ]
卷期号:73 (5): 439-445 被引量:125
标识
DOI:10.1136/thoraxjnl-2017-211090
摘要

Rationale Two distinct acute respiratory distress syndrome (ARDS) subphenotypes have been identified using data obtained at time of enrolment in clinical trials; it remains unknown if these subphenotypes are durable over time. Objective To determine the stability of ARDS subphenotypes over time. Methods Secondary analysis of data from two randomised controlled trials in ARDS, the ARMA trial of lung protective ventilation (n=473; patients randomised to low tidal volumes only) and the ALVEOLI trial of low versus high positive end-expiratory pressure (n=549). Latent class analysis (LCA) and latent transition analysis (LTA) were applied to data from day 0 and day 3, independent of clinical outcomes. Measurements and main results In ALVEOLI, LCA indicated strong evidence of two ARDS latent classes at days 0 and 3; in ARMA, evidence of two classes was stronger at day 0 than at day 3. The clinical and biological features of these two classes were similar to those in our prior work and were largely stable over time, though class 2 demonstrated evidence of progressive organ failures by day 3, compared with class 1. In both LCA and LTA models, the majority of patients (>94%) stayed in the same class from day 0 to day 3. Clinical outcomes were statistically significantly worse in class 2 than class 1 and were more strongly associated with day 3 class assignment. Conclusions ARDS subphenotypes are largely stable over the first 3 days of enrolment in two ARDS Network trials, suggesting that subphenotype identification may be feasible in the context of clinical trials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
yk发布了新的文献求助10
1秒前
危机的尔蝶完成签到,获得积分10
1秒前
1秒前
张童鞋完成签到 ,获得积分10
1秒前
KZxxx发布了新的文献求助10
2秒前
2秒前
2秒前
欢也零星完成签到,获得积分10
2秒前
qizhang完成签到,获得积分10
2秒前
3秒前
4秒前
Jasper应助bofu采纳,获得10
4秒前
FashionBoy应助zzx采纳,获得10
4秒前
隐形曼青应助无限亦寒采纳,获得10
5秒前
xu完成签到,获得积分10
5秒前
Owen应助乖猴猴采纳,获得10
5秒前
俊逸兰谷完成签到,获得积分10
5秒前
xinanan发布了新的文献求助10
6秒前
于于发布了新的文献求助10
6秒前
Liuzihao发布了新的文献求助10
6秒前
玺青一生完成签到 ,获得积分10
7秒前
8秒前
8秒前
威威完成签到,获得积分10
8秒前
nini发布了新的文献求助10
8秒前
super chan发布了新的文献求助100
9秒前
10秒前
dddb完成签到,获得积分10
11秒前
Lucas应助bofu采纳,获得10
11秒前
12秒前
KZxxx完成签到,获得积分20
12秒前
13秒前
肥肥凤梨完成签到,获得积分10
13秒前
时尚羿完成签到,获得积分20
13秒前
14秒前
14秒前
hhh发布了新的文献求助10
14秒前
小糯发布了新的文献求助10
14秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3734840
求助须知:如何正确求助?哪些是违规求助? 3278768
关于积分的说明 10011520
捐赠科研通 2995441
什么是DOI,文献DOI怎么找? 1643442
邀请新用户注册赠送积分活动 781187
科研通“疑难数据库(出版商)”最低求助积分说明 749300