Efficient full-chip SRAF placement using machine learning for best accuracy and improved consistency

计算机科学 过程(计算) 进程窗口 人工智能 卷积神经网络 节点(物理) 光学接近校正 计算机工程 一致性(知识库) 并行计算 算法 结构工程 操作系统 工程类
作者
Shibing Wang,Stanislas Baron,Nishrin Kachwala,Chidam Kallingal,Jing Su,Quan Zhang,Vincent Shu,Jinwei Gao,Jung-Hoon Ser,Zero Li,Ahmad Elsaid,Been-Der Chen,Weichun Fong,Dezheng Sun,Rafael C. Howell,Stephen D. H. Hsu,Larry Luo,Yi Zou,Gary Zhang,Yen-Wen Lu
标识
DOI:10.1117/12.2299421
摘要

Various computational approaches from rule-based to model-based methods exist to place Sub-Resolution Assist Features (SRAF) in order to increase process window for lithography. Each method has its advantages and drawbacks, and typically requires the user to make a trade-off between time of development, accuracy, consistency and cycle time. Rule-based methods, used since the 90 nm node, require long development time and struggle to achieve good process window performance for complex patterns. Heuristically driven, their development is often iterative and involves significant engineering time from multiple disciplines (Litho, OPC and DTCO). Model-based approaches have been widely adopted since the 20 nm node. While the development of model-driven placement methods is relatively straightforward, they often become computationally expensive when high accuracy is required. Furthermore these methods tend to yield less consistent SRAFs due to the nature of the approach: they rely on a model which is sensitive to the pattern placement on the native simulation grid, and can be impacted by such related grid dependency effects. Those undesirable effects tend to become stronger when more iterations or complexity are needed in the algorithm to achieve required accuracy. ASML Brion has developed a new SRAF placement technique on the Tachyon platform that is assisted by machine learning and significantly improves the accuracy of full chip SRAF placement while keeping consistency and runtime under control. A Deep Convolutional Neural Network (DCNN) is trained using the target wafer layout and corresponding Continuous Transmission Mask (CTM) images. These CTM images have been fully optimized using the Tachyon inverse mask optimization engine. The neural network generated SRAF guidance map is then used to place SRAF on full-chip. This is different from our existing full-chip MB-SRAF approach which utilizes a SRAF guidance map (SGM) of mask sensitivity to improve the contrast of optical image at the target pattern edges. In this paper, we demonstrate that machine learning assisted SRAF placement can achieve a superior process window compared to the SGM model-based SRAF method, while keeping the full-chip runtime affordable, and maintain consistency of SRAF placement . We describe the current status of this machine learning assisted SRAF technique and demonstrate its application to full chip mask synthesis and discuss how it can extend the computational lithography roadmap.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9C完成签到,获得积分10
刚刚
芭芭拉发布了新的文献求助10
1秒前
2秒前
旅行的小七仔完成签到 ,获得积分10
3秒前
FashionBoy应助yidiandian采纳,获得10
3秒前
4秒前
snoke完成签到,获得积分10
5秒前
5秒前
Theprisoners完成签到,获得积分10
6秒前
zhangyu应助飞云采纳,获得10
6秒前
Syx_rcees发布了新的文献求助10
7秒前
7秒前
7秒前
大模型应助绝情继父采纳,获得10
7秒前
orixero应助lyg616358001采纳,获得10
8秒前
8秒前
9秒前
9秒前
小马甲应助潇洒的平松采纳,获得10
9秒前
慕青应助SSY采纳,获得10
9秒前
wanci应助pluto采纳,获得10
9秒前
zzazz完成签到,获得积分10
10秒前
流川封发布了新的文献求助10
10秒前
11秒前
张文懿发布了新的文献求助10
12秒前
YapengWang发布了新的文献求助10
12秒前
yuan发布了新的文献求助20
12秒前
tuanheqi发布了新的文献求助20
12秒前
yinxx完成签到,获得积分10
13秒前
klpkyx发布了新的文献求助10
13秒前
安静黄豆发布了新的文献求助10
13秒前
梦红尘完成签到,获得积分10
13秒前
绿海发布了新的文献求助30
14秒前
14秒前
jiangmingjiao完成签到,获得积分10
15秒前
15秒前
15秒前
15秒前
阳光的衫完成签到,获得积分10
15秒前
shatang发布了新的文献求助10
16秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998449
求助须知:如何正确求助?哪些是违规求助? 3537924
关于积分的说明 11272900
捐赠科研通 3276966
什么是DOI,文献DOI怎么找? 1807205
邀请新用户注册赠送积分活动 883819
科研通“疑难数据库(出版商)”最低求助积分说明 810020