Efficient full-chip SRAF placement using machine learning for best accuracy and improved consistency

计算机科学 过程(计算) 进程窗口 人工智能 卷积神经网络 节点(物理) 光学接近校正 计算机工程 一致性(知识库) 并行计算 算法 结构工程 工程类 操作系统
作者
Shibing Wang,Stanislas Baron,Nishrin Kachwala,Chidam Kallingal,Jing Su,Quan Zhang,Vincent Shu,Jinwei Gao,Jung-Hoon Ser,Zero Li,Ahmad Elsaid,Been-Der Chen,Weichun Fong,Dezheng Sun,Rafael C. Howell,Stephen D. H. Hsu,Larry Luo,Yi Zou,Gary Zhang,Yen-Wen Lu
标识
DOI:10.1117/12.2299421
摘要

Various computational approaches from rule-based to model-based methods exist to place Sub-Resolution Assist Features (SRAF) in order to increase process window for lithography. Each method has its advantages and drawbacks, and typically requires the user to make a trade-off between time of development, accuracy, consistency and cycle time. Rule-based methods, used since the 90 nm node, require long development time and struggle to achieve good process window performance for complex patterns. Heuristically driven, their development is often iterative and involves significant engineering time from multiple disciplines (Litho, OPC and DTCO). Model-based approaches have been widely adopted since the 20 nm node. While the development of model-driven placement methods is relatively straightforward, they often become computationally expensive when high accuracy is required. Furthermore these methods tend to yield less consistent SRAFs due to the nature of the approach: they rely on a model which is sensitive to the pattern placement on the native simulation grid, and can be impacted by such related grid dependency effects. Those undesirable effects tend to become stronger when more iterations or complexity are needed in the algorithm to achieve required accuracy. ASML Brion has developed a new SRAF placement technique on the Tachyon platform that is assisted by machine learning and significantly improves the accuracy of full chip SRAF placement while keeping consistency and runtime under control. A Deep Convolutional Neural Network (DCNN) is trained using the target wafer layout and corresponding Continuous Transmission Mask (CTM) images. These CTM images have been fully optimized using the Tachyon inverse mask optimization engine. The neural network generated SRAF guidance map is then used to place SRAF on full-chip. This is different from our existing full-chip MB-SRAF approach which utilizes a SRAF guidance map (SGM) of mask sensitivity to improve the contrast of optical image at the target pattern edges. In this paper, we demonstrate that machine learning assisted SRAF placement can achieve a superior process window compared to the SGM model-based SRAF method, while keeping the full-chip runtime affordable, and maintain consistency of SRAF placement . We describe the current status of this machine learning assisted SRAF technique and demonstrate its application to full chip mask synthesis and discuss how it can extend the computational lithography roadmap.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lixiunan发布了新的文献求助10
1秒前
郭桑发布了新的文献求助10
1秒前
2秒前
蒙塔啦发布了新的文献求助10
2秒前
2秒前
Justtry发布了新的文献求助10
3秒前
4秒前
4秒前
黑暗系发布了新的文献求助10
5秒前
aurora关注了科研通微信公众号
5秒前
xkun发布了新的文献求助10
5秒前
6秒前
6秒前
深情安青应助XiaoHU采纳,获得10
6秒前
良辰应助lumin采纳,获得10
7秒前
JJ完成签到,获得积分10
7秒前
Zn应助阳阳采纳,获得10
7秒前
良辰应助去去去问问采纳,获得10
7秒前
肉卷完成签到 ,获得积分10
8秒前
清爽的代容完成签到,获得积分10
9秒前
星辰大海应助小逢逢采纳,获得10
9秒前
9秒前
9秒前
慕青应助桃花源的瓶起子采纳,获得10
10秒前
Maigret完成签到,获得积分10
10秒前
Q.L完成签到,获得积分20
10秒前
JJ发布了新的文献求助10
11秒前
11秒前
ll完成签到 ,获得积分10
13秒前
流心小汤包完成签到,获得积分10
13秒前
14秒前
乐唔完成签到,获得积分10
14秒前
14秒前
14秒前
15秒前
李爱国应助打死小胖纸采纳,获得10
15秒前
凌晨四点半完成签到,获得积分10
15秒前
16秒前
16秒前
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3543565
求助须知:如何正确求助?哪些是违规求助? 3120838
关于积分的说明 9344680
捐赠科研通 2818938
什么是DOI,文献DOI怎么找? 1549855
邀请新用户注册赠送积分活动 722316
科研通“疑难数据库(出版商)”最低求助积分说明 713126