Multilevel Cognitive Diagnosis Models for Assessing Changes in Latent Attributes

多级模型 集合(抽象数据类型) 项目反应理论 结构方程建模 航程(航空) 统计 潜在类模型 特质 计算机科学 估计 数学 计量经济学 心理测量学 材料科学 管理 经济 复合材料 程序设计语言
作者
Hung‐Yu Huang
出处
期刊:Journal of Educational Measurement [Wiley]
卷期号:54 (4): 440-480 被引量:28
标识
DOI:10.1111/jedm.12156
摘要

Abstract Cognitive diagnosis models (CDMs) have been developed to evaluate the mastery status of individuals with respect to a set of defined attributes or skills that are measured through testing. When individuals are repeatedly administered a cognitive diagnosis test, a new class of multilevel CDMs is required to assess the changes in their attributes and simultaneously estimate the model parameters from the different measurements. In this study, the most general CDM of the generalized deterministic input, noisy “and” gate (G‐DINA) model was extended to a multilevel higher order CDM by embedding a multilevel structure into higher order latent traits. A series of simulations based on diverse factors was conducted to assess the quality of the parameter estimation. The results demonstrate that the model parameters can be recovered fairly well and attribute mastery can be precisely estimated if the sample size is large and the test is sufficiently long. The range of the location parameters had opposing effects on the recovery of the item and person parameters. Ignoring the multilevel structure in the data by fitting a single‐level G‐DINA model decreased the attribute classification accuracy and the precision of latent trait estimation. The number of measurement occasions had a substantial impact on latent trait estimation. Satisfactory model and person parameter recoveries could be achieved even when assumptions of the measurement invariance of the model parameters over time were violated. A longitudinal basic ability assessment is outlined to demonstrate the application of the new models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Andy_Cheung完成签到,获得积分10
刚刚
feng完成签到,获得积分10
1秒前
maomao发布了新的文献求助10
1秒前
leena完成签到,获得积分10
1秒前
1秒前
青衣北风发布了新的文献求助10
2秒前
feng发布了新的文献求助10
2秒前
guygun发布了新的文献求助10
5秒前
小灰灰完成签到,获得积分10
6秒前
6秒前
海鸥海鸥发布了新的文献求助10
7秒前
青衣北风完成签到,获得积分10
7秒前
9秒前
MasterE完成签到,获得积分10
10秒前
我的小伙伴应助feng采纳,获得10
10秒前
善学以致用应助feng采纳,获得10
10秒前
11秒前
11秒前
gaoww发布了新的文献求助10
11秒前
小二发布了新的文献求助10
15秒前
solobang发布了新的文献求助10
16秒前
CodeCraft应助Jocelyn7采纳,获得10
16秒前
秋之月完成签到,获得积分10
16秒前
17秒前
cheche关注了科研通微信公众号
17秒前
18秒前
科研小民工应助kento采纳,获得50
19秒前
完美世界应助小萌采纳,获得10
20秒前
20秒前
gaoww完成签到,获得积分10
20秒前
21秒前
WZ0904发布了新的文献求助10
21秒前
21秒前
lab完成签到 ,获得积分0
21秒前
小蘑菇应助今今采纳,获得10
22秒前
CodeCraft应助秋之月采纳,获得10
22秒前
I1waml完成签到 ,获得积分10
22秒前
22秒前
guygun完成签到,获得积分10
22秒前
zho发布了新的文献求助10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824