Integration of temporal and spatial properties of dynamic connectivity networks for automatic diagnosis of brain disease

动态功能连接 功能磁共振成像 计算机科学 认知 人工智能 神经科学 大脑活动与冥想 心理学 脑电图
作者
Biao Jie,Mingxia Liu,Dinggang Shen
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:47: 81-94 被引量:139
标识
DOI:10.1016/j.media.2018.03.013
摘要

Functional connectivity networks (FCNs) using resting-state functional magnetic resonance imaging (rs-fMRI) have been applied to the analysis and diagnosis of brain disease, such as Alzheimer’s disease (AD) and its prodrome, i.e., mild cognitive impairment (MCI). Different from conventional studies focusing on static descriptions on functional connectivity (FC) between brain regions in rs-fMRI, recent studies have resorted to dynamic connectivity networks (DCNs) to characterize the dynamic changes of FC, since dynamic changes of FC may indicate changes in macroscopic neural activity patterns in cognitive and behavioral aspects. However, most of the existing studies only investigate the temporal properties of DCNs (e.g., temporal variability of FC between specific brain regions), ignoring the important spatial properties of the network (e.g., spatial variability of FC associated with a specific brain region). Also, emerging evidence on FCNs has suggested that, besides temporal variability, there is significant spatial variability of activity foci over time. Hence, integrating both temporal and spatial properties of DCNs can intuitively promote the performance of connectivity-network-based learning methods. In this paper, we first define a new measure to characterize the spatial variability of DCNs, and then propose a novel learning framework to integrate both temporal and spatial variabilities of DCNs for automatic brain disease diagnosis. Specifically, we first construct DCNs from the rs-fMRI time series at successive non-overlapping time windows. Then, we characterize the spatial variability of a specific brain region by computing the correlation of functional sequences (i.e., the changing profile of FC between a pair of brain regions within all time windows) associated with this region. Furthermore, we extract both temporal variabilities and spatial variabilities from DCNs as features, and integrate them for classification by using manifold regularized multi-task feature learning and multi-kernel learning techniques. Results on 149 subjects with baseline rs-fMRI data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) suggest that our method can not only improve the classification performance in comparison with state-of-the-art methods, but also provide insights into the spatio-temporal interaction patterns of brain activity and their changes in brain disorders.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
褚人达完成签到,获得积分10
1秒前
脑洞疼应助阿腾采纳,获得10
1秒前
3秒前
aaa发布了新的文献求助10
3秒前
4秒前
SYY发布了新的文献求助20
4秒前
牵着猴子晒月亮完成签到,获得积分10
4秒前
甜蜜的笑白完成签到,获得积分10
5秒前
5秒前
6秒前
8秒前
9秒前
ark861023发布了新的文献求助10
12秒前
13秒前
书生意气发布了新的文献求助10
15秒前
15秒前
呆瓜完成签到,获得积分10
17秒前
五香糯米饭给五香糯米饭的求助进行了留言
18秒前
保命要紧完成签到,获得积分10
18秒前
mkbk发布了新的文献求助10
18秒前
aaa完成签到,获得积分10
18秒前
美好斓发布了新的文献求助10
19秒前
liuxiaofeng2943完成签到 ,获得积分10
20秒前
伶俐小凝完成签到,获得积分10
20秒前
22秒前
26秒前
完美世界应助ark861023采纳,获得10
27秒前
27秒前
机灵夜云发布了新的文献求助10
28秒前
tong完成签到,获得积分10
31秒前
31秒前
阿腾发布了新的文献求助10
32秒前
Clover04发布了新的文献求助10
32秒前
34秒前
刘佳婷发布了新的文献求助10
34秒前
35秒前
Orange应助科研通管家采纳,获得10
35秒前
英俊的铭应助科研通管家采纳,获得10
35秒前
嗯哼应助科研通管家采纳,获得10
36秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The late Devonian Standard Conodont Zonation 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3236178
求助须知:如何正确求助?哪些是违规求助? 2881896
关于积分的说明 8224233
捐赠科研通 2549884
什么是DOI,文献DOI怎么找? 1378686
科研通“疑难数据库(出版商)”最低求助积分说明 648444
邀请新用户注册赠送积分活动 623891