亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Integration of temporal and spatial properties of dynamic connectivity networks for automatic diagnosis of brain disease

动态功能连接 功能磁共振成像 计算机科学 认知 人工智能 神经科学 大脑活动与冥想 心理学 脑电图
作者
Biao Jie,Mingxia Liu,Dinggang Shen
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:47: 81-94 被引量:139
标识
DOI:10.1016/j.media.2018.03.013
摘要

Functional connectivity networks (FCNs) using resting-state functional magnetic resonance imaging (rs-fMRI) have been applied to the analysis and diagnosis of brain disease, such as Alzheimer’s disease (AD) and its prodrome, i.e., mild cognitive impairment (MCI). Different from conventional studies focusing on static descriptions on functional connectivity (FC) between brain regions in rs-fMRI, recent studies have resorted to dynamic connectivity networks (DCNs) to characterize the dynamic changes of FC, since dynamic changes of FC may indicate changes in macroscopic neural activity patterns in cognitive and behavioral aspects. However, most of the existing studies only investigate the temporal properties of DCNs (e.g., temporal variability of FC between specific brain regions), ignoring the important spatial properties of the network (e.g., spatial variability of FC associated with a specific brain region). Also, emerging evidence on FCNs has suggested that, besides temporal variability, there is significant spatial variability of activity foci over time. Hence, integrating both temporal and spatial properties of DCNs can intuitively promote the performance of connectivity-network-based learning methods. In this paper, we first define a new measure to characterize the spatial variability of DCNs, and then propose a novel learning framework to integrate both temporal and spatial variabilities of DCNs for automatic brain disease diagnosis. Specifically, we first construct DCNs from the rs-fMRI time series at successive non-overlapping time windows. Then, we characterize the spatial variability of a specific brain region by computing the correlation of functional sequences (i.e., the changing profile of FC between a pair of brain regions within all time windows) associated with this region. Furthermore, we extract both temporal variabilities and spatial variabilities from DCNs as features, and integrate them for classification by using manifold regularized multi-task feature learning and multi-kernel learning techniques. Results on 149 subjects with baseline rs-fMRI data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) suggest that our method can not only improve the classification performance in comparison with state-of-the-art methods, but also provide insights into the spatio-temporal interaction patterns of brain activity and their changes in brain disorders.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
leo完成签到,获得积分10
7秒前
zzz发布了新的文献求助10
8秒前
小样发布了新的文献求助10
9秒前
今后应助Mong那粒沙采纳,获得10
9秒前
13秒前
16秒前
浮游应助小样采纳,获得10
16秒前
浮游应助张志超采纳,获得10
18秒前
章鱼完成签到,获得积分10
20秒前
西瓜二郎发布了新的文献求助10
21秒前
21秒前
史前巨怪完成签到,获得积分10
22秒前
zzz关闭了zzz文献求助
22秒前
西瓜二郎完成签到,获得积分10
35秒前
浮游应助张志超采纳,获得10
36秒前
英姑应助有趣的银采纳,获得10
37秒前
43秒前
小昼完成签到 ,获得积分10
45秒前
冷静的振家完成签到,获得积分10
51秒前
52秒前
56秒前
浮游应助小样采纳,获得10
1分钟前
CX发布了新的文献求助10
1分钟前
1分钟前
1分钟前
SciGPT应助科研通管家采纳,获得10
1分钟前
大个应助科研通管家采纳,获得10
1分钟前
1分钟前
冷静的访天完成签到 ,获得积分10
1分钟前
科目三应助迅速广缘采纳,获得10
1分钟前
丘比特应助不爱吃鳗鱼采纳,获得10
1分钟前
王铁柱发布了新的文献求助10
1分钟前
1分钟前
1分钟前
科yt发布了新的文献求助10
1分钟前
王铁柱完成签到,获得积分10
1分钟前
迅速广缘发布了新的文献求助10
1分钟前
领导范儿应助我困采纳,获得10
1分钟前
Ava应助阿歪歪采纳,获得10
1分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Fermented Coffee Market 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5232484
求助须知:如何正确求助?哪些是违规求助? 4401772
关于积分的说明 13699328
捐赠科研通 4268152
什么是DOI,文献DOI怎么找? 2342364
邀请新用户注册赠送积分活动 1339409
关于科研通互助平台的介绍 1296070