Integration of temporal and spatial properties of dynamic connectivity networks for automatic diagnosis of brain disease

动态功能连接 功能磁共振成像 计算机科学 认知 人工智能 神经科学 大脑活动与冥想 心理学 脑电图
作者
Biao Jie,Mingxia Liu,Dinggang Shen
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:47: 81-94 被引量:139
标识
DOI:10.1016/j.media.2018.03.013
摘要

Functional connectivity networks (FCNs) using resting-state functional magnetic resonance imaging (rs-fMRI) have been applied to the analysis and diagnosis of brain disease, such as Alzheimer’s disease (AD) and its prodrome, i.e., mild cognitive impairment (MCI). Different from conventional studies focusing on static descriptions on functional connectivity (FC) between brain regions in rs-fMRI, recent studies have resorted to dynamic connectivity networks (DCNs) to characterize the dynamic changes of FC, since dynamic changes of FC may indicate changes in macroscopic neural activity patterns in cognitive and behavioral aspects. However, most of the existing studies only investigate the temporal properties of DCNs (e.g., temporal variability of FC between specific brain regions), ignoring the important spatial properties of the network (e.g., spatial variability of FC associated with a specific brain region). Also, emerging evidence on FCNs has suggested that, besides temporal variability, there is significant spatial variability of activity foci over time. Hence, integrating both temporal and spatial properties of DCNs can intuitively promote the performance of connectivity-network-based learning methods. In this paper, we first define a new measure to characterize the spatial variability of DCNs, and then propose a novel learning framework to integrate both temporal and spatial variabilities of DCNs for automatic brain disease diagnosis. Specifically, we first construct DCNs from the rs-fMRI time series at successive non-overlapping time windows. Then, we characterize the spatial variability of a specific brain region by computing the correlation of functional sequences (i.e., the changing profile of FC between a pair of brain regions within all time windows) associated with this region. Furthermore, we extract both temporal variabilities and spatial variabilities from DCNs as features, and integrate them for classification by using manifold regularized multi-task feature learning and multi-kernel learning techniques. Results on 149 subjects with baseline rs-fMRI data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) suggest that our method can not only improve the classification performance in comparison with state-of-the-art methods, but also provide insights into the spatio-temporal interaction patterns of brain activity and their changes in brain disorders.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
zho发布了新的文献求助30
2秒前
2秒前
ywang发布了新的文献求助10
2秒前
ZD小草完成签到 ,获得积分10
3秒前
健忘曼冬完成签到,获得积分10
4秒前
hkl1542发布了新的文献求助50
5秒前
6秒前
7秒前
KYN完成签到,获得积分10
8秒前
8秒前
桐桐应助叶未晞yi采纳,获得10
8秒前
8秒前
su发布了新的文献求助10
9秒前
123456789完成签到,获得积分10
11秒前
炙热的如柏完成签到,获得积分20
11秒前
12秒前
13秒前
HWei完成签到,获得积分10
13秒前
Ryan完成签到,获得积分10
13秒前
14秒前
Jzhang应助丙队长采纳,获得10
16秒前
17秒前
GXY发布了新的文献求助30
18秒前
Lucas应助专注秋尽采纳,获得10
18秒前
18秒前
754完成签到,获得积分10
18秒前
21秒前
学习猴发布了新的文献求助10
21秒前
充电宝应助炙热的如柏采纳,获得10
22秒前
所所应助qzaima采纳,获得10
22秒前
米兰达完成签到 ,获得积分0
23秒前
xg发布了新的文献求助10
25秒前
Loooong应助Ni采纳,获得10
26秒前
26秒前
WZ0904发布了新的文献求助10
26秒前
顾矜应助博ge采纳,获得10
28秒前
28秒前
Lotus发布了新的文献求助10
29秒前
30秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824