已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Integration of temporal and spatial properties of dynamic connectivity networks for automatic diagnosis of brain disease

动态功能连接 功能磁共振成像 计算机科学 认知 人工智能 神经科学 大脑活动与冥想 心理学 脑电图
作者
Biao Jie,Mingxia Liu,Dinggang Shen
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:47: 81-94 被引量:139
标识
DOI:10.1016/j.media.2018.03.013
摘要

Functional connectivity networks (FCNs) using resting-state functional magnetic resonance imaging (rs-fMRI) have been applied to the analysis and diagnosis of brain disease, such as Alzheimer’s disease (AD) and its prodrome, i.e., mild cognitive impairment (MCI). Different from conventional studies focusing on static descriptions on functional connectivity (FC) between brain regions in rs-fMRI, recent studies have resorted to dynamic connectivity networks (DCNs) to characterize the dynamic changes of FC, since dynamic changes of FC may indicate changes in macroscopic neural activity patterns in cognitive and behavioral aspects. However, most of the existing studies only investigate the temporal properties of DCNs (e.g., temporal variability of FC between specific brain regions), ignoring the important spatial properties of the network (e.g., spatial variability of FC associated with a specific brain region). Also, emerging evidence on FCNs has suggested that, besides temporal variability, there is significant spatial variability of activity foci over time. Hence, integrating both temporal and spatial properties of DCNs can intuitively promote the performance of connectivity-network-based learning methods. In this paper, we first define a new measure to characterize the spatial variability of DCNs, and then propose a novel learning framework to integrate both temporal and spatial variabilities of DCNs for automatic brain disease diagnosis. Specifically, we first construct DCNs from the rs-fMRI time series at successive non-overlapping time windows. Then, we characterize the spatial variability of a specific brain region by computing the correlation of functional sequences (i.e., the changing profile of FC between a pair of brain regions within all time windows) associated with this region. Furthermore, we extract both temporal variabilities and spatial variabilities from DCNs as features, and integrate them for classification by using manifold regularized multi-task feature learning and multi-kernel learning techniques. Results on 149 subjects with baseline rs-fMRI data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) suggest that our method can not only improve the classification performance in comparison with state-of-the-art methods, but also provide insights into the spatio-temporal interaction patterns of brain activity and their changes in brain disorders.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
早睡早起完成签到 ,获得积分10
刚刚
domkps完成签到 ,获得积分10
1秒前
你今天学了多少完成签到 ,获得积分10
3秒前
3秒前
Huanghong完成签到,获得积分10
6秒前
汤汤杨杨完成签到,获得积分10
6秒前
荷兰香猪完成签到,获得积分10
6秒前
太阳罗山的地方完成签到,获得积分10
6秒前
彭于晏应助吃遍幼儿园采纳,获得10
7秒前
7秒前
Res_M完成签到 ,获得积分10
9秒前
独特丹萱完成签到,获得积分10
9秒前
美式发布了新的文献求助10
10秒前
12秒前
崔志海完成签到,获得积分10
14秒前
奋斗的绝悟完成签到,获得积分10
15秒前
斯文败类应助科研通管家采纳,获得10
16秒前
共享精神应助科研通管家采纳,获得10
16秒前
机灵柚子应助科研通管家采纳,获得150
16秒前
田様应助科研通管家采纳,获得10
16秒前
田様应助科研通管家采纳,获得10
16秒前
酷波er应助科研通管家采纳,获得10
16秒前
CipherSage应助科研通管家采纳,获得10
16秒前
16秒前
悄悄完成签到 ,获得积分10
20秒前
Edison完成签到,获得积分10
29秒前
mr完成签到 ,获得积分10
32秒前
云翰完成签到,获得积分10
35秒前
饼干玮玮完成签到,获得积分10
36秒前
虚心涵山完成签到 ,获得积分10
37秒前
111完成签到 ,获得积分10
37秒前
同尘完成签到 ,获得积分10
37秒前
齐齐完成签到,获得积分10
38秒前
北觅完成签到 ,获得积分10
42秒前
优雅夕阳完成签到 ,获得积分0
46秒前
Timon完成签到,获得积分10
47秒前
目土土完成签到 ,获得积分10
47秒前
喜来乐发布了新的文献求助10
48秒前
完美世界应助同尘采纳,获得10
48秒前
饼饼完成签到,获得积分10
48秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4982546
求助须知:如何正确求助?哪些是违规求助? 4234223
关于积分的说明 13188600
捐赠科研通 4026045
什么是DOI,文献DOI怎么找? 2202562
邀请新用户注册赠送积分活动 1214824
关于科研通互助平台的介绍 1131402