已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Integration of temporal and spatial properties of dynamic connectivity networks for automatic diagnosis of brain disease

动态功能连接 功能磁共振成像 计算机科学 认知 人工智能 神经科学 大脑活动与冥想 心理学 脑电图
作者
Biao Jie,Mingxia Liu,Dinggang Shen
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:47: 81-94 被引量:139
标识
DOI:10.1016/j.media.2018.03.013
摘要

Functional connectivity networks (FCNs) using resting-state functional magnetic resonance imaging (rs-fMRI) have been applied to the analysis and diagnosis of brain disease, such as Alzheimer’s disease (AD) and its prodrome, i.e., mild cognitive impairment (MCI). Different from conventional studies focusing on static descriptions on functional connectivity (FC) between brain regions in rs-fMRI, recent studies have resorted to dynamic connectivity networks (DCNs) to characterize the dynamic changes of FC, since dynamic changes of FC may indicate changes in macroscopic neural activity patterns in cognitive and behavioral aspects. However, most of the existing studies only investigate the temporal properties of DCNs (e.g., temporal variability of FC between specific brain regions), ignoring the important spatial properties of the network (e.g., spatial variability of FC associated with a specific brain region). Also, emerging evidence on FCNs has suggested that, besides temporal variability, there is significant spatial variability of activity foci over time. Hence, integrating both temporal and spatial properties of DCNs can intuitively promote the performance of connectivity-network-based learning methods. In this paper, we first define a new measure to characterize the spatial variability of DCNs, and then propose a novel learning framework to integrate both temporal and spatial variabilities of DCNs for automatic brain disease diagnosis. Specifically, we first construct DCNs from the rs-fMRI time series at successive non-overlapping time windows. Then, we characterize the spatial variability of a specific brain region by computing the correlation of functional sequences (i.e., the changing profile of FC between a pair of brain regions within all time windows) associated with this region. Furthermore, we extract both temporal variabilities and spatial variabilities from DCNs as features, and integrate them for classification by using manifold regularized multi-task feature learning and multi-kernel learning techniques. Results on 149 subjects with baseline rs-fMRI data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) suggest that our method can not only improve the classification performance in comparison with state-of-the-art methods, but also provide insights into the spatio-temporal interaction patterns of brain activity and their changes in brain disorders.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张宇完成签到,获得积分10
1秒前
2秒前
2秒前
风中从丹完成签到,获得积分10
3秒前
张宇发布了新的文献求助30
4秒前
4秒前
5秒前
CNNC完成签到,获得积分10
6秒前
油柑美式发布了新的文献求助10
7秒前
斯文的凝珍完成签到,获得积分10
10秒前
Tayzon完成签到,获得积分10
11秒前
11秒前
GuGuGaGaAH发布了新的文献求助10
11秒前
14秒前
wackykao完成签到 ,获得积分10
21秒前
科研通AI6应助Chris03Ray采纳,获得10
23秒前
等待的剑身完成签到,获得积分10
26秒前
科目三应助自然的亦巧采纳,获得10
30秒前
霍则风发布了新的文献求助20
32秒前
小马甲应助可爱花瓣采纳,获得10
32秒前
顾矜应助土豆的发芽日记采纳,获得10
34秒前
Ricardo完成签到 ,获得积分10
34秒前
37秒前
云文完成签到,获得积分10
38秒前
叶逐风发布了新的文献求助10
39秒前
山野完成签到 ,获得积分10
40秒前
原初发布了新的文献求助10
42秒前
42秒前
吱吱吱吱完成签到 ,获得积分10
43秒前
43秒前
在水一方应助霍则风采纳,获得10
45秒前
白星辰完成签到 ,获得积分10
46秒前
可爱花瓣发布了新的文献求助10
46秒前
47秒前
48秒前
长长的名字完成签到 ,获得积分10
53秒前
stark完成签到,获得积分10
56秒前
初一完成签到 ,获得积分10
57秒前
积极丹南发布了新的文献求助10
57秒前
亲爱的安德烈完成签到,获得积分10
58秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Le transsexualisme : étude nosographique et médico-légale (en PDF) 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5312794
求助须知:如何正确求助?哪些是违规求助? 4456438
关于积分的说明 13866448
捐赠科研通 4344951
什么是DOI,文献DOI怎么找? 2386255
邀请新用户注册赠送积分活动 1380491
关于科研通互助平台的介绍 1348979