Modeling of Continuous Microbial Fuel Cell (CMFC) for Control Applications

微生物燃料电池 商业化 背景(考古学) 计算机科学 工艺工程 生化工程 过程(计算) 系统动力学 持续性 环境科学 发电 工程类 生态学 电气工程 人工智能 业务 古生物学 营销 功率(物理) 物理 操作系统 生物 量子力学
作者
Ashish Yewale,Ravi Methekar,Shailesh Agrawal
出处
期刊:Meeting abstracts 卷期号:MA2018-01 (38): 2265-2265
标识
DOI:10.1149/ma2018-01/38/2265
摘要

Sustainability and resource management is one of the major concerns for scientific community now days. In this context, in many fields of research, the focus is centred on the re-utilization of used resources with no further damage to the environment. Microbial fuel cell (MFC) is one of the technologies, where electricity is generated from waste-water. MFC is an electrochemical device that converts organic matter directly into the electricity with high efficiency. MFCs offer certain advantages such as minimum sludge production, cost effective and operation at normal condition. Despite its wide range of potential applications and ease of feed stocks, commercialisation of this technology did not realized till now 1 . The major limitations for the commercialization are the scale up of the process 2 and continuous operations. To perform continuous operation for longer time, it is extremely important to understand the dynamics of the system. Dynamics of the system can be understood by performing exhaustive experiments and analysing the data thus obtained. But performing exhaustive experiments is a time consuming as well expensive task. The other approach is to model the system to understand the dynamics. In literature very few researcher worked on the modeling of continuous microbial fuel cell (CMFC). Although batch modeling of MFC have been reported earlier, a very few studies had focused on understanding the dynamics of the system. First dynamic study was carried out by Zhang et al 3 , and there model is based on electron transfer using mediator. Later, Picioreanu et al 4 modeled the bio-film development on the anode electrode in MFC. Marcus et al 5 and Pinto et al 6 developed 1-D model for multispecies electron donor and acceptor for bio-film anode based on the material balance, Ohm’s law and Nernst-Monod kinetics to describe the rate of electron donor oxidation. In 2017, Esfandyari et al 7 , developed batch process model considering direct electron transfer through bio-film to the electron acceptor. In this talk, we will present a continuous model developed for MFC and dynamic analysis of potential controlled variables. Dynamic analysis will provide deeper insights of the various physical phenomena of the microbial fuel cell. In present work, model presented by Esfandyari et al 7 which is a batch model is taken as the basis. Batch model developed in this work is validated with the work of Esfandyari 7 and Picioreanu et al 4 for typical dynamic responses. The batch model is then converted into the dual chamber continuous model. In continuous model, substrate (Lactate) and oxygen is continuously fed to the anode and cathode chamber respectively as shown in Figure 1. Coolant is supplied through the jacket to maintain the required operating temperature of the cell. Bacteria species Shewanella is used as the catalyst to oxidise electron donor. The electrons produced are then reaching the cathode electrode via external circuit producing the power. Protons migrate to the cathode through the proton exchange membrane. In the cathode chamber, transferred electrons and migrated protons are reacted with dissolved oxygen to produce water. To understand the dynamic of the MFC, the step change study of the important parameters i.e. substrate concentration, current produced and coolant flow have been simulated. The simulation result of this model is shown in Figure 2, where time variations of the current shows first order dynamic. The settling time observed to be approximately 20 days. It is also noted that the current obtained from the same size of fuel cell in continuous system is higher than the batch. Once the impact of pH is accounted into the model, the dynamic analysis with respective various potential manipulated variables i.e. pH of the solution, flow rate of the substrate and coolant flow rate will be studied to get further insight of the microbial fuel cell. The model, thus developed will be used as a system for devising an effective control and optimization strategies for the microbial fuel cell. References: J. Chouler, G. Padgett, P. Cameron, K. Peruss, M. Titirici, I. Ieropoulos, and M. Lorenzo, Electrochimica Acta, 196 , 89-98,(2016) S. Choi, Biosensors and Bioelectronic , 69 , 8-25 (2015). X. Zhang and A. Halme, B iotechnology Letters , 17 (8), 809-814 (1995). C. Picioreanua, I. Head, K. Katuri, M. van Loosdrecht, K. Scott, Water Research , 41 , 2921-2940 (2007). A. Marcus, C. Torres, B. Rittmann, Biotechnology and Bioengineering , 98 (6), 1171-1182 (2007). R. Pinto, B. Srinivasan, M. Manuel, B. Tartakovsky, Bioresource Technology , 101 (14), 5256-5265 (2010). Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
文文文完成签到,获得积分10
2秒前
菜大炮完成签到,获得积分10
3秒前
小瓦片发布了新的文献求助10
3秒前
56jhjl完成签到,获得积分10
4秒前
酶没美镁发布了新的文献求助10
8秒前
9秒前
wxy111完成签到,获得积分10
11秒前
鸭子完成签到,获得积分10
11秒前
11秒前
12秒前
13秒前
14秒前
颜超发布了新的文献求助10
15秒前
16秒前
快乐的土土完成签到 ,获得积分10
16秒前
施文涛发布了新的文献求助30
16秒前
顾矜应助团团采纳,获得10
16秒前
在水一方应助皓月千里采纳,获得10
16秒前
lily336699完成签到,获得积分10
16秒前
16秒前
跳跃的访烟完成签到 ,获得积分10
17秒前
马一凡完成签到,获得积分10
18秒前
脑洞疼应助哒哒哒采纳,获得10
18秒前
JamesPei应助panda采纳,获得10
18秒前
司南应助自由冬亦采纳,获得70
19秒前
20秒前
21秒前
李健的小迷弟应助颜超采纳,获得10
21秒前
22秒前
倩倩完成签到,获得积分10
22秒前
科研通AI2S应助浮流少年采纳,获得10
22秒前
欧阳媭完成签到,获得积分10
22秒前
24秒前
Zoe发布了新的文献求助10
25秒前
25秒前
du完成签到 ,获得积分10
26秒前
Limbay168发布了新的文献求助10
27秒前
完美世界应助一树春风采纳,获得10
27秒前
888886kn完成签到,获得积分10
27秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165215
求助须知:如何正确求助?哪些是违规求助? 2816263
关于积分的说明 7912059
捐赠科研通 2475954
什么是DOI,文献DOI怎么找? 1318452
科研通“疑难数据库(出版商)”最低求助积分说明 632171
版权声明 602388