Co-occurrent Structural Edge Detection for Color-Guided Depth Map Super-Resolution

计算机科学 人工智能 计算机视觉 GSM演进的增强数据速率 分辨率(逻辑) 边缘检测 模式识别(心理学) 图像(数学) 图像处理
作者
Jiang Zhu,Wei Zhai,Yang Cao,Zheng-Jun Zha
出处
期刊:Lecture Notes in Computer Science 卷期号:: 93-105 被引量:4
标识
DOI:10.1007/978-3-319-73603-7_8
摘要

Although RGBD cameras can provide depth information in real scenes, the captured depth map is often of low resolution and insufficient quality compared to the color image. Typically, most of the existing methods work by assuming that the edges in depth map and its corresponding color image are more likely to occur simultaneously. However, when the color image is rich in detail, the high-frequency information which is non-existent in the depth map will be introduced into the depth map. In this paper, we propose a CNN-based method to detect the co-occurrent structural edge for color-guided depth map super-resolution. Firstly, we design an edge detection convolutional neural network (CNN) to obtain the co-occurrent structural edge in depth map and its corresponding color image. Then we pack the obtained co-occurrent structural edges and the interpolated low-resolution depth maps into another customized CNN for depth map super-resolution. The presented scheme can effectively interpret and exploit the structural correlation between the depth map and the color image. Additionally, recursive learning is adopted to reduce the parameters of the customized CNN for depth map super-resolution and avoid overfitting. Experimental results demonstrate the effectiveness and reliability of our proposed approach by comparing with the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
研友_QQC完成签到,获得积分10
1秒前
NeuroWhite完成签到,获得积分10
1秒前
1秒前
搜索v完成签到,获得积分10
2秒前
liuchuck完成签到 ,获得积分10
2秒前
2秒前
2秒前
猫独秀完成签到,获得积分10
2秒前
4秒前
buno应助yuefeng采纳,获得10
4秒前
yiming完成签到,获得积分10
4秒前
落落发布了新的文献求助10
5秒前
清秋若月完成签到 ,获得积分10
5秒前
5秒前
呵呵呵呵完成签到,获得积分10
6秒前
6秒前
远方发布了新的文献求助10
7秒前
zxc111关注了科研通微信公众号
7秒前
8秒前
nanhe698发布了新的文献求助10
8秒前
Huang完成签到,获得积分10
8秒前
碳土不凡完成签到 ,获得积分10
9秒前
9秒前
淡淡采白发布了新的文献求助10
10秒前
10秒前
11秒前
Akim应助dingdong采纳,获得10
11秒前
11秒前
11秒前
satchzhao发布了新的文献求助10
11秒前
可爱的函函应助尺素寸心采纳,获得10
11秒前
66发布了新的文献求助10
12秒前
一鸣完成签到,获得积分10
12秒前
12秒前
ding应助呵呵呵呵采纳,获得10
12秒前
12秒前
汉堡包应助hkxfg采纳,获得10
14秒前
15秒前
sw完成签到,获得积分10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808