CT-based radiomic model predicts high grade of clear cell renal cell carcinoma

医学 肾透明细胞癌 一致相关系数 一致性 肾细胞癌 纹理(宇宙学) 肾切除术 队列 Lasso(编程语言) 逻辑回归 核医学 放射科 人工智能 内科学 统计 数学 计算机科学 图像(数学) 万维网
作者
Jiule Ding,Zhaoyu Xing,Zhenxing Jiang,Jie Chen,Pan Liang,Jianguo Qiu,Wei Xing
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:103: 51-56 被引量:133
标识
DOI:10.1016/j.ejrad.2018.04.013
摘要

Abstract Purpose To compare the predictive models that can incorporate a set of CT image features for preoperatively differentiating the high grade (Fuhrman III–IV) from low grade (Fuhrman I–II) clear cell renal cell carcinoma (ccRCC). Material and methods One hundred and fourteen patients with ccRCC treated with a partial or radical nephrectomy were enrolled in the training cohort. The six non-texture features, including Pseudocapsule, Round mass, maximal tumor diameter (Diametermax), intratumoral artery (Arterytumor), enhancement value of the tumor (TEV) and relative TEV (rTEV), were assessed for each tumor. The texture features were extracted from the CT images of the section with the largest area of renal mass at both corticomedullary and nephrographic phases. The least absolute shrinkage and selection operator (LASSO) was used to screen the most valuable texture features to calculate a texture score (Texture-score) for each patient. A logistic regression model was used in the training cohort to discriminate the high from low grade ccRCC at nephrectomy. The predictors would include all non-texture features in Model 1, all non-texture features and Texture-score in Model 2, and Texture-score in Model 3. The performance of the predictive models were tested and compared in an independent validation cohort composed of 92 cases with ccRCC. Results Inter-rater agreement was good for each non-texture feature and Texture-score (the concordance correlation coefficient or Kappa coefficient > 0.70). The Texture-score was calculated via a linear combination of the 4 selected texture features. The three models shown good discrimination of the high from low grade ccRCC in the training cohort and the area under receiver operating characteristic curve (AUC) was 0.826 in Mode 1, 0.878 in Model 2 and 0.843 in Model 3, and a significant different AUC was found between Model 1 and Model 2. Application of the predictive models in the validation cohort still gave a discrimination (AUC > 0.670), and the Texture-score based models with or without the non-texture features (Model 2 and 3) showed a better discrimination of the high from low grade ccRCC (P  Conclusion This study presented the Texture-score based models can facilitate the preoperative discrimination of the high from low grade ccRCC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
叶子完成签到 ,获得积分0
刚刚
1秒前
嘟嘟完成签到,获得积分10
1秒前
无极微光应助细心的安珊采纳,获得20
1秒前
香蕉觅云应助17采纳,获得10
1秒前
慢慢完成签到,获得积分10
1秒前
搜集达人应助内向灵凡采纳,获得10
2秒前
松山小吏发布了新的文献求助10
2秒前
大黄发布了新的文献求助30
2秒前
lk发布了新的文献求助10
2秒前
ccc发布了新的文献求助10
3秒前
hzs发布了新的文献求助10
3秒前
卷饼发布了新的文献求助10
3秒前
怡然的寻桃完成签到,获得积分20
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
5秒前
神经哈哈完成签到,获得积分10
5秒前
君临发布了新的文献求助10
5秒前
6秒前
慢慢发布了新的文献求助10
6秒前
7秒前
善学以致用应助ccc采纳,获得10
7秒前
阳阳完成签到,获得积分10
7秒前
xl完成签到 ,获得积分10
8秒前
求知的周发布了新的文献求助30
9秒前
meibeiwu关注了科研通微信公众号
9秒前
HZH发布了新的文献求助10
10秒前
小蘑菇完成签到 ,获得积分10
10秒前
nb小子发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
David发布了新的文献求助10
12秒前
团团完成签到,获得积分10
12秒前
zwx发布了新的文献求助10
13秒前
怡然的寻桃关注了科研通微信公众号
14秒前
今天炒鱿鱼完成签到,获得积分20
14秒前
电池小能手完成签到,获得积分10
15秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694761
求助须知:如何正确求助?哪些是违规求助? 5098681
关于积分的说明 15214483
捐赠科研通 4851292
什么是DOI,文献DOI怎么找? 2602253
邀请新用户注册赠送积分活动 1554141
关于科研通互助平台的介绍 1512049