已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

CT-based radiomic model predicts high grade of clear cell renal cell carcinoma

医学 肾透明细胞癌 一致相关系数 一致性 肾细胞癌 纹理(宇宙学) 肾切除术 队列 Lasso(编程语言) 逻辑回归 核医学 放射科 人工智能 内科学 统计 数学 计算机科学 图像(数学) 万维网
作者
Jiule Ding,Zhaoyu Xing,Zhenxing Jiang,Jie Chen,Pan Liang,Jianguo Qiu,Wei Xing
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:103: 51-56 被引量:133
标识
DOI:10.1016/j.ejrad.2018.04.013
摘要

Abstract Purpose To compare the predictive models that can incorporate a set of CT image features for preoperatively differentiating the high grade (Fuhrman III–IV) from low grade (Fuhrman I–II) clear cell renal cell carcinoma (ccRCC). Material and methods One hundred and fourteen patients with ccRCC treated with a partial or radical nephrectomy were enrolled in the training cohort. The six non-texture features, including Pseudocapsule, Round mass, maximal tumor diameter (Diametermax), intratumoral artery (Arterytumor), enhancement value of the tumor (TEV) and relative TEV (rTEV), were assessed for each tumor. The texture features were extracted from the CT images of the section with the largest area of renal mass at both corticomedullary and nephrographic phases. The least absolute shrinkage and selection operator (LASSO) was used to screen the most valuable texture features to calculate a texture score (Texture-score) for each patient. A logistic regression model was used in the training cohort to discriminate the high from low grade ccRCC at nephrectomy. The predictors would include all non-texture features in Model 1, all non-texture features and Texture-score in Model 2, and Texture-score in Model 3. The performance of the predictive models were tested and compared in an independent validation cohort composed of 92 cases with ccRCC. Results Inter-rater agreement was good for each non-texture feature and Texture-score (the concordance correlation coefficient or Kappa coefficient > 0.70). The Texture-score was calculated via a linear combination of the 4 selected texture features. The three models shown good discrimination of the high from low grade ccRCC in the training cohort and the area under receiver operating characteristic curve (AUC) was 0.826 in Mode 1, 0.878 in Model 2 and 0.843 in Model 3, and a significant different AUC was found between Model 1 and Model 2. Application of the predictive models in the validation cohort still gave a discrimination (AUC > 0.670), and the Texture-score based models with or without the non-texture features (Model 2 and 3) showed a better discrimination of the high from low grade ccRCC (P  Conclusion This study presented the Texture-score based models can facilitate the preoperative discrimination of the high from low grade ccRCC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
lkl发布了新的文献求助10
6秒前
李四关注了科研通微信公众号
8秒前
超级野狼发布了新的文献求助10
10秒前
榛子发布了新的文献求助10
12秒前
14秒前
安青兰完成签到 ,获得积分10
16秒前
岁大爷发布了新的文献求助10
20秒前
20秒前
20秒前
甜美的秋尽完成签到,获得积分10
21秒前
科研通AI6.1应助初始采纳,获得10
24秒前
anders完成签到 ,获得积分10
24秒前
领导范儿应助不安诗云采纳,获得10
24秒前
霜月发布了新的文献求助10
25秒前
25秒前
26秒前
李四发布了新的文献求助10
27秒前
XPX完成签到 ,获得积分10
28秒前
追风少年发布了新的文献求助10
29秒前
30秒前
小耳朵发布了新的文献求助10
31秒前
Crw__完成签到,获得积分10
35秒前
111发布了新的文献求助10
35秒前
木土完成签到 ,获得积分10
36秒前
39秒前
Fluoxetine完成签到,获得积分10
40秒前
41秒前
sherry完成签到 ,获得积分10
41秒前
榛子完成签到,获得积分10
42秒前
Yuling完成签到,获得积分10
42秒前
冷酷不可发布了新的文献求助10
43秒前
Delight完成签到 ,获得积分0
43秒前
44秒前
liujian发布了新的文献求助10
49秒前
鱼鱼完成签到 ,获得积分10
49秒前
刘不动完成签到,获得积分10
51秒前
心系天下完成签到 ,获得积分10
51秒前
初始发布了新的文献求助10
52秒前
领导范儿应助沉默的早晨采纳,获得10
53秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5754539
求助须知:如何正确求助?哪些是违规求助? 5487532
关于积分的说明 15380217
捐赠科研通 4893123
什么是DOI,文献DOI怎么找? 2631743
邀请新用户注册赠送积分活动 1579677
关于科研通互助平台的介绍 1535399