CT-based radiomic model predicts high grade of clear cell renal cell carcinoma

医学 肾透明细胞癌 一致相关系数 一致性 肾细胞癌 纹理(宇宙学) 肾切除术 队列 Lasso(编程语言) 逻辑回归 核医学 放射科 人工智能 内科学 统计 数学 计算机科学 图像(数学) 万维网
作者
Jiule Ding,Zhaoyu Xing,Zhenxing Jiang,Jie Chen,Pan Liang,Jianguo Qiu,Wei Xing
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:103: 51-56 被引量:133
标识
DOI:10.1016/j.ejrad.2018.04.013
摘要

Abstract Purpose To compare the predictive models that can incorporate a set of CT image features for preoperatively differentiating the high grade (Fuhrman III–IV) from low grade (Fuhrman I–II) clear cell renal cell carcinoma (ccRCC). Material and methods One hundred and fourteen patients with ccRCC treated with a partial or radical nephrectomy were enrolled in the training cohort. The six non-texture features, including Pseudocapsule, Round mass, maximal tumor diameter (Diametermax), intratumoral artery (Arterytumor), enhancement value of the tumor (TEV) and relative TEV (rTEV), were assessed for each tumor. The texture features were extracted from the CT images of the section with the largest area of renal mass at both corticomedullary and nephrographic phases. The least absolute shrinkage and selection operator (LASSO) was used to screen the most valuable texture features to calculate a texture score (Texture-score) for each patient. A logistic regression model was used in the training cohort to discriminate the high from low grade ccRCC at nephrectomy. The predictors would include all non-texture features in Model 1, all non-texture features and Texture-score in Model 2, and Texture-score in Model 3. The performance of the predictive models were tested and compared in an independent validation cohort composed of 92 cases with ccRCC. Results Inter-rater agreement was good for each non-texture feature and Texture-score (the concordance correlation coefficient or Kappa coefficient > 0.70). The Texture-score was calculated via a linear combination of the 4 selected texture features. The three models shown good discrimination of the high from low grade ccRCC in the training cohort and the area under receiver operating characteristic curve (AUC) was 0.826 in Mode 1, 0.878 in Model 2 and 0.843 in Model 3, and a significant different AUC was found between Model 1 and Model 2. Application of the predictive models in the validation cohort still gave a discrimination (AUC > 0.670), and the Texture-score based models with or without the non-texture features (Model 2 and 3) showed a better discrimination of the high from low grade ccRCC (P  Conclusion This study presented the Texture-score based models can facilitate the preoperative discrimination of the high from low grade ccRCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
跳跃乘风完成签到,获得积分10
1秒前
Anxinxin完成签到,获得积分10
1秒前
阳佟冬卉完成签到,获得积分10
2秒前
Silence发布了新的文献求助10
2秒前
2秒前
通通通发布了新的文献求助10
3秒前
帅气的秘密完成签到 ,获得积分10
3秒前
领导范儿应助马建国采纳,获得10
3秒前
lysixsixsix完成签到,获得积分10
3秒前
4秒前
jia完成签到,获得积分10
4秒前
欣喜乐天发布了新的文献求助10
4秒前
Kiyotaka完成签到,获得积分10
4秒前
5秒前
季夏发布了新的文献求助10
5秒前
Tingshan发布了新的文献求助20
6秒前
背后的诺言完成签到 ,获得积分20
6秒前
GHOST完成签到,获得积分20
7秒前
7秒前
勤奋的蜗牛完成签到,获得积分20
7秒前
omo发布了新的文献求助10
7秒前
Akim应助糊糊采纳,获得10
8秒前
Zn应助dsjlove采纳,获得10
8秒前
月球宇航员完成签到,获得积分10
8秒前
8秒前
英姑应助亲爱的安德烈采纳,获得10
10秒前
今后应助workwork采纳,获得10
10秒前
10秒前
落后翠柏发布了新的文献求助10
10秒前
淡然凝丹完成签到,获得积分10
10秒前
Y_Jfeng完成签到,获得积分10
11秒前
潼熙甄完成签到 ,获得积分10
12秒前
Lucas应助糖糖采纳,获得10
12秒前
wyblobin发布了新的文献求助10
12秒前
星辰大海应助叶飞荷采纳,获得10
12秒前
wanmiao12完成签到,获得积分10
13秒前
13秒前
14秒前
lmr完成签到,获得积分10
14秒前
gu完成签到 ,获得积分10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762