CT-based radiomic model predicts high grade of clear cell renal cell carcinoma

医学 肾透明细胞癌 一致相关系数 一致性 肾细胞癌 纹理(宇宙学) 肾切除术 队列 Lasso(编程语言) 逻辑回归 核医学 放射科 人工智能 内科学 统计 数学 计算机科学 图像(数学) 万维网
作者
Jiule Ding,Zhaoyu Xing,Zhenxing Jiang,Jie Chen,Pan Liang,Jianguo Qiu,Wei Xing
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:103: 51-56 被引量:133
标识
DOI:10.1016/j.ejrad.2018.04.013
摘要

Abstract Purpose To compare the predictive models that can incorporate a set of CT image features for preoperatively differentiating the high grade (Fuhrman III–IV) from low grade (Fuhrman I–II) clear cell renal cell carcinoma (ccRCC). Material and methods One hundred and fourteen patients with ccRCC treated with a partial or radical nephrectomy were enrolled in the training cohort. The six non-texture features, including Pseudocapsule, Round mass, maximal tumor diameter (Diametermax), intratumoral artery (Arterytumor), enhancement value of the tumor (TEV) and relative TEV (rTEV), were assessed for each tumor. The texture features were extracted from the CT images of the section with the largest area of renal mass at both corticomedullary and nephrographic phases. The least absolute shrinkage and selection operator (LASSO) was used to screen the most valuable texture features to calculate a texture score (Texture-score) for each patient. A logistic regression model was used in the training cohort to discriminate the high from low grade ccRCC at nephrectomy. The predictors would include all non-texture features in Model 1, all non-texture features and Texture-score in Model 2, and Texture-score in Model 3. The performance of the predictive models were tested and compared in an independent validation cohort composed of 92 cases with ccRCC. Results Inter-rater agreement was good for each non-texture feature and Texture-score (the concordance correlation coefficient or Kappa coefficient > 0.70). The Texture-score was calculated via a linear combination of the 4 selected texture features. The three models shown good discrimination of the high from low grade ccRCC in the training cohort and the area under receiver operating characteristic curve (AUC) was 0.826 in Mode 1, 0.878 in Model 2 and 0.843 in Model 3, and a significant different AUC was found between Model 1 and Model 2. Application of the predictive models in the validation cohort still gave a discrimination (AUC > 0.670), and the Texture-score based models with or without the non-texture features (Model 2 and 3) showed a better discrimination of the high from low grade ccRCC (P  Conclusion This study presented the Texture-score based models can facilitate the preoperative discrimination of the high from low grade ccRCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
shuzhan发布了新的文献求助10
1秒前
草莓幻珊关注了科研通微信公众号
1秒前
在水一方应助称心千凝采纳,获得30
1秒前
Migrol完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
华仔应助伍寒烟采纳,获得10
4秒前
5秒前
Usman完成签到,获得积分20
6秒前
6秒前
6秒前
木偶人完成签到,获得积分10
6秒前
创新发布了新的文献求助10
7秒前
7秒前
sfsfes发布了新的文献求助10
8秒前
博士后发布了新的文献求助10
10秒前
一一一发布了新的文献求助10
10秒前
baekhyun完成签到,获得积分10
10秒前
乐乐应助WALLE采纳,获得10
11秒前
11秒前
多情高丽完成签到,获得积分10
11秒前
织诗成锦发布了新的文献求助10
11秒前
He完成签到,获得积分20
12秒前
xzy998应助好好采纳,获得10
12秒前
12秒前
12秒前
13秒前
He发布了新的文献求助10
14秒前
15秒前
mice完成签到,获得积分10
15秒前
斑马睡不着完成签到,获得积分10
15秒前
17秒前
17秒前
du发布了新的文献求助10
20秒前
20秒前
真理千寻完成签到 ,获得积分10
21秒前
骑驴追火箭完成签到,获得积分10
23秒前
深情安青应助TTT采纳,获得10
24秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3306326
求助须知:如何正确求助?哪些是违规求助? 2940119
关于积分的说明 8495852
捐赠科研通 2614365
什么是DOI,文献DOI怎么找? 1428119
科研通“疑难数据库(出版商)”最低求助积分说明 663281
邀请新用户注册赠送积分活动 648135