Predicting the Effect of Amino Acid Single-Point Mutations on Protein Stability—Large-Scale Validation of MD-Based Relative Free Energy Calculations

蛋白质稳定性 理论(学习稳定性) 分子动力学 自由能微扰 生物信息学 蛋白质工程 蛋白质结构 点突变 突变 计算生物学 化学 统计物理学 物理 计算化学 计算机科学 生物 生物化学 基因 机器学习
作者
Thomas Steinbrecher,Chongkai Zhu,Lingle Wang,Robert Abel,Christopher Negron,David A. Pearlman,Eric Feyfant,Jian‐Xin Duan,Woody Sherman
出处
期刊:Journal of Molecular Biology [Elsevier]
卷期号:429 (7): 948-963 被引量:84
标识
DOI:10.1016/j.jmb.2016.12.007
摘要

The stability of folded proteins is critical to their biological function and for the efficacy of protein therapeutics. Predicting the energetic effects of protein mutations can improve our fundamental understanding of structural biology, the molecular basis of diseases, and possible routes to addressing those diseases with biological drugs. Identifying the effect of single amino acid point mutations on the thermodynamic equilibrium between the folded and unfolded states of a protein can pinpoint residues of critical importance that should be avoided in the process of improving other properties (affinity, solubility, viscosity, etc.) and suggest changes at other positions for increasing stability in protein engineering. Multiple computational tools have been developed for in silico predictions of protein stability in recent years, ranging from sequence-based empirical approaches to rigorous physics-based free energy methods. In this work, we show that FEP+, which is a free energy perturbation method based on all-atom molecular dynamics simulations, can provide accurate thermal stability predictions for a wide range of biologically relevant systems. Significantly, the FEP+ approach, while originally developed for relative binding free energies of small molecules to proteins and not specifically fitted for protein stability calculations, performs well compared to other methods that were fitted specifically to predict protein stability. Here, we present the broadest validation of a rigorous free energy-based approach applied to protein stability reported to date: 700+ single-point mutations spanning 10 different protein targets. Across the entire data set, we correctly classify the mutations as stabilizing or destabilizing in 84% of the cases, and obtain statistically significant predictions as compared with experiment [average error of ~1.6kcal/mol and coefficient of determination (R2) of 0.40]. This study demonstrates, for the first time in a large-scale validation, that rigorous free energy calculations can be used to predict changes in protein stability from point mutations without parameterization or system-specific customization, although further improvements should be possible with additional sampling and a better representation of the unfolded state of the protein. Here, we describe the FEP+ method as applied to protein stability calculations, summarize the large-scale retrospective validation results, and discuss limitations of the method, along with future directions for further improvements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡然的寻冬完成签到 ,获得积分10
2秒前
YAMO一发布了新的文献求助10
2秒前
酷波er应助陈梦鼠采纳,获得10
3秒前
3秒前
yangts2021发布了新的文献求助10
4秒前
5秒前
金梦丽完成签到,获得积分10
7秒前
迷了路的猫完成签到,获得积分10
7秒前
fat发布了新的文献求助20
8秒前
8秒前
8秒前
8秒前
10秒前
11秒前
科研通AI2S应助koemouey采纳,获得10
11秒前
11秒前
12秒前
欧阳发布了新的文献求助10
12秒前
13秒前
13秒前
陈梦鼠发布了新的文献求助10
15秒前
小巧怀薇发布了新的文献求助10
15秒前
blhbpjn完成签到 ,获得积分20
16秒前
瘦瘦问旋发布了新的文献求助10
16秒前
18秒前
曾馨慧发布了新的文献求助10
19秒前
zxx0126完成签到,获得积分10
21秒前
22秒前
是小胡ya完成签到,获得积分10
24秒前
Owen应助陈梦鼠采纳,获得10
24秒前
领导范儿应助El采纳,获得10
24秒前
HANGOVERG发布了新的文献求助10
25秒前
yangts2021发布了新的文献求助10
26秒前
闲人颦儿发布了新的文献求助10
26秒前
26秒前
曾馨慧完成签到,获得积分10
27秒前
Alive完成签到,获得积分10
29秒前
瘦瘦问旋完成签到,获得积分10
29秒前
34秒前
Jasper应助2021采纳,获得10
35秒前
高分求助中
Earth System Geophysics 1000
Co-opetition under Endogenous Bargaining Power 666
Semiconductor Process Reliability in Practice 650
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3210163
求助须知:如何正确求助?哪些是违规求助? 2859556
关于积分的说明 8119816
捐赠科研通 2525082
什么是DOI,文献DOI怎么找? 1358790
科研通“疑难数据库(出版商)”最低求助积分说明 642875
邀请新用户注册赠送积分活动 614694