Predicting the Effect of Amino Acid Single-Point Mutations on Protein Stability—Large-Scale Validation of MD-Based Relative Free Energy Calculations

蛋白质稳定性 理论(学习稳定性) 分子动力学 比例(比率) 点突变 能量(信号处理) 突变 化学 物理 计算化学 计算机科学 数学 统计 生物化学 机器学习 基因 量子力学
作者
Thomas Steinbrecher,Chongkai Zhu,Lingle Wang,Robert Abel,Christopher Negron,David A. Pearlman,Eric Feyfant,Jianxin Duan,Woody Sherman
出处
期刊:Journal of Molecular Biology [Elsevier]
卷期号:429 (7): 948-963 被引量:111
标识
DOI:10.1016/j.jmb.2016.12.007
摘要

The stability of folded proteins is critical to their biological function and for the efficacy of protein therapeutics. Predicting the energetic effects of protein mutations can improve our fundamental understanding of structural biology, the molecular basis of diseases, and possible routes to addressing those diseases with biological drugs. Identifying the effect of single amino acid point mutations on the thermodynamic equilibrium between the folded and unfolded states of a protein can pinpoint residues of critical importance that should be avoided in the process of improving other properties (affinity, solubility, viscosity, etc.) and suggest changes at other positions for increasing stability in protein engineering. Multiple computational tools have been developed for in silico predictions of protein stability in recent years, ranging from sequence-based empirical approaches to rigorous physics-based free energy methods. In this work, we show that FEP+, which is a free energy perturbation method based on all-atom molecular dynamics simulations, can provide accurate thermal stability predictions for a wide range of biologically relevant systems. Significantly, the FEP+ approach, while originally developed for relative binding free energies of small molecules to proteins and not specifically fitted for protein stability calculations, performs well compared to other methods that were fitted specifically to predict protein stability. Here, we present the broadest validation of a rigorous free energy-based approach applied to protein stability reported to date: 700+ single-point mutations spanning 10 different protein targets. Across the entire data set, we correctly classify the mutations as stabilizing or destabilizing in 84% of the cases, and obtain statistically significant predictions as compared with experiment [average error of ~1.6kcal/mol and coefficient of determination (R2) of 0.40]. This study demonstrates, for the first time in a large-scale validation, that rigorous free energy calculations can be used to predict changes in protein stability from point mutations without parameterization or system-specific customization, although further improvements should be possible with additional sampling and a better representation of the unfolded state of the protein. Here, we describe the FEP+ method as applied to protein stability calculations, summarize the large-scale retrospective validation results, and discuss limitations of the method, along with future directions for further improvements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
缓慢千易完成签到,获得积分10
刚刚
刚刚
fmmuxiaoqiang发布了新的文献求助10
刚刚
Sue完成签到 ,获得积分10
刚刚
康师傅发布了新的文献求助10
刚刚
刚刚
脑洞疼应助xy采纳,获得10
刚刚
1秒前
LuciusHe发布了新的文献求助30
1秒前
zyro完成签到,获得积分10
1秒前
众行绘研举报lana_leslie求助涉嫌违规
2秒前
2秒前
hh发布了新的文献求助10
2秒前
漂亮的麦片完成签到 ,获得积分10
2秒前
在水一方应助奋进号采纳,获得10
2秒前
2秒前
3秒前
皮皮怪发布了新的文献求助10
4秒前
宋嬴一发布了新的文献求助10
4秒前
林暮雪发布了新的文献求助10
4秒前
完美世界应助菲常好采纳,获得10
4秒前
卢浩发布了新的文献求助10
4秒前
刘菠萝完成签到 ,获得积分10
4秒前
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
夏稚发布了新的文献求助10
7秒前
大力惜海发布了新的文献求助10
7秒前
Anthony发布了新的文献求助10
8秒前
oooaini完成签到,获得积分20
8秒前
8秒前
九月鹰飞完成签到,获得积分10
8秒前
8秒前
wuludie应助FENG采纳,获得10
8秒前
9秒前
10秒前
宋嬴一完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645868
求助须知:如何正确求助?哪些是违规求助? 4769933
关于积分的说明 15032529
捐赠科研通 4804556
什么是DOI,文献DOI怎么找? 2569078
邀请新用户注册赠送积分活动 1526182
关于科研通互助平台的介绍 1485721