Functional Microgels and Microgel Systems

高分子 胶体 胶束 聚合物 纳米技术 化学工程 纳米颗粒 纳米凝胶 材料科学 单体 化学 化学物理 药物输送 有机化学 水溶液 工程类 生物化学
作者
Felix A. Plamper,Walter Richtering
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:50 (2): 131-140 被引量:632
标识
DOI:10.1021/acs.accounts.6b00544
摘要

Microgels are macromolecular networks swollen by the solvent in which they are dissolved. They are unique systems that are distinctly different from common colloids, such as, e.g., rigid nanoparticles, flexible macromolecules, micelles, or vesicles. The size of the microgel networks is in the range of several micrometers down to nanometers (then sometimes called "nanogels"). In a collapsed state, they might resemble hard colloids but they can still contain significant amounts of solvent. When swollen, they are soft and have a fuzzy surface with dangling chains. The presence of cross-links provides structural integrity, in contrast to linear and (hyper)branched polymers. Obviously, the cross-linker content will allow control of whether microgels behave more "colloidal" or "macromolecular". The combination of being soft and porous while still having a stable structure through the cross-linked network allows for designing microgels that have the same total chemical composition, but different properties due to a different architecture. Microgels based, e.g., on two monomers but have either statistical spatial distribution, or a core-shell or hollow-two-shell morphology will display very different properties. Microgels provide the possibility to introduce chemical functionality at different positions. Combining architectural diversity and compartmentalization of reactive groups enables thus short-range coexistence of otherwise instable combinations of chemical reactivity. The open microgel structure is beneficial for uptake-release purposes of active substances. In addition, the openness allows site-selective integration of active functionalities like reactive groups, charges, or markers by postmodification processes. The unique ability of microgels to retain their colloidal stability and swelling degree both in water and in many organic solvents allows use of different chemistries for the modification of microgel structure. The capability of microgels to adjust both their shape and volume in response to external stimuli (e.g., temperature, ionic strength and composition, pH, electrochemical stimulus, pressure, light) provides the opportunity to reversibly tune their physicochemical properties. From a physics point of view, microgels are particularly intriguing and challenging, since their intraparticle properties are intimately linked to their interparticle behavior. Microgels, which reveal interface activity without necessarily being amphiphilic, develop even more complex behavior when located at fluid or solid interfaces: the sensitivity of microgels to various stimuli allows, e.g., the modulation of emulsion stability, adhesion, sensing, and filtration. Hence, we envision an ever-increasing relevance of microgels in these fields including biomedicine and process technology. In sum, microgels unite properties of very different classes of materials. Microgels can be based on very different (bio)macromolecules such as, e.g., polysaccharides, peptides, or DNA, as well as on synthetic polymers. This Account focuses on synthetic microgels (mainly based on acrylamides); however, the general, fundamental features of microgels are independent of the chemical nature of the building moieties. Microgels allow combining features of chemical functionality, structural integrity, macromolecular architecture, adaptivity, permeability, and deformability in a unique way to include the "best" of the colloidal, polymeric, and surfactant worlds. This will open the door for novel applications in very different fields such as, e.g., in sensors, catalysis, and separation technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
www完成签到,获得积分10
刚刚
刚刚
Xx完成签到,获得积分10
1秒前
只因完成签到,获得积分10
1秒前
1秒前
深情笑南完成签到,获得积分20
1秒前
asdfghj发布了新的文献求助10
2秒前
zz应助Shirley采纳,获得30
2秒前
开朗发夹完成签到,获得积分10
3秒前
同學你該吃藥了完成签到 ,获得积分10
3秒前
3秒前
4秒前
酷波er应助fisher采纳,获得40
4秒前
九命猫完成签到 ,获得积分10
4秒前
topsun发布了新的文献求助10
5秒前
皮三问完成签到,获得积分10
5秒前
烟花应助紫愿采纳,获得10
5秒前
Yyy完成签到,获得积分10
5秒前
cowboy123完成签到,获得积分10
5秒前
5秒前
景代丝发布了新的文献求助10
5秒前
yiyiyiyiyi//完成签到,获得积分10
5秒前
Qi完成签到 ,获得积分10
6秒前
俊秀的安阳完成签到,获得积分10
6秒前
郁金香完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
6秒前
小曾完成签到,获得积分10
6秒前
www发布了新的文献求助10
7秒前
zxzxzxzxzxzx完成签到,获得积分20
7秒前
科研狗完成签到,获得积分10
7秒前
gny完成签到,获得积分10
8秒前
乖张发布了新的文献求助10
8秒前
8秒前
ll完成签到,获得积分20
8秒前
abcdefj完成签到,获得积分10
9秒前
hjyylab应助冯123采纳,获得10
9秒前
9秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016344
求助须知:如何正确求助?哪些是违规求助? 3556478
关于积分的说明 11321199
捐赠科研通 3289279
什么是DOI,文献DOI怎么找? 1812421
邀请新用户注册赠送积分活动 887952
科研通“疑难数据库(出版商)”最低求助积分说明 812060