亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Functional Microgels and Microgel Systems

高分子 胶体 胶束 聚合物 纳米技术 化学工程 纳米颗粒 纳米凝胶 材料科学 单体 化学 化学物理 药物输送 有机化学 水溶液 工程类 生物化学
作者
Felix A. Plamper,Walter Richtering
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:50 (2): 131-140 被引量:660
标识
DOI:10.1021/acs.accounts.6b00544
摘要

Microgels are macromolecular networks swollen by the solvent in which they are dissolved. They are unique systems that are distinctly different from common colloids, such as, e.g., rigid nanoparticles, flexible macromolecules, micelles, or vesicles. The size of the microgel networks is in the range of several micrometers down to nanometers (then sometimes called "nanogels"). In a collapsed state, they might resemble hard colloids but they can still contain significant amounts of solvent. When swollen, they are soft and have a fuzzy surface with dangling chains. The presence of cross-links provides structural integrity, in contrast to linear and (hyper)branched polymers. Obviously, the cross-linker content will allow control of whether microgels behave more "colloidal" or "macromolecular". The combination of being soft and porous while still having a stable structure through the cross-linked network allows for designing microgels that have the same total chemical composition, but different properties due to a different architecture. Microgels based, e.g., on two monomers but have either statistical spatial distribution, or a core-shell or hollow-two-shell morphology will display very different properties. Microgels provide the possibility to introduce chemical functionality at different positions. Combining architectural diversity and compartmentalization of reactive groups enables thus short-range coexistence of otherwise instable combinations of chemical reactivity. The open microgel structure is beneficial for uptake-release purposes of active substances. In addition, the openness allows site-selective integration of active functionalities like reactive groups, charges, or markers by postmodification processes. The unique ability of microgels to retain their colloidal stability and swelling degree both in water and in many organic solvents allows use of different chemistries for the modification of microgel structure. The capability of microgels to adjust both their shape and volume in response to external stimuli (e.g., temperature, ionic strength and composition, pH, electrochemical stimulus, pressure, light) provides the opportunity to reversibly tune their physicochemical properties. From a physics point of view, microgels are particularly intriguing and challenging, since their intraparticle properties are intimately linked to their interparticle behavior. Microgels, which reveal interface activity without necessarily being amphiphilic, develop even more complex behavior when located at fluid or solid interfaces: the sensitivity of microgels to various stimuli allows, e.g., the modulation of emulsion stability, adhesion, sensing, and filtration. Hence, we envision an ever-increasing relevance of microgels in these fields including biomedicine and process technology. In sum, microgels unite properties of very different classes of materials. Microgels can be based on very different (bio)macromolecules such as, e.g., polysaccharides, peptides, or DNA, as well as on synthetic polymers. This Account focuses on synthetic microgels (mainly based on acrylamides); however, the general, fundamental features of microgels are independent of the chemical nature of the building moieties. Microgels allow combining features of chemical functionality, structural integrity, macromolecular architecture, adaptivity, permeability, and deformability in a unique way to include the "best" of the colloidal, polymeric, and surfactant worlds. This will open the door for novel applications in very different fields such as, e.g., in sensors, catalysis, and separation technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助谭代涛采纳,获得10
21秒前
38秒前
59秒前
harrywoo发布了新的文献求助30
1分钟前
彭于晏应助真实的映寒采纳,获得10
1分钟前
loitinsuen完成签到,获得积分10
1分钟前
1分钟前
Jasper应助明芬采纳,获得10
1分钟前
酷波er应助harrywoo采纳,获得10
1分钟前
1分钟前
1分钟前
明芬发布了新的文献求助10
1分钟前
谭代涛发布了新的文献求助10
2分钟前
草木完成签到 ,获得积分20
2分钟前
2分钟前
2分钟前
明芬发布了新的文献求助10
3分钟前
BowieHuang应助科研通管家采纳,获得10
3分钟前
BowieHuang应助科研通管家采纳,获得10
3分钟前
3分钟前
精明犀牛完成签到,获得积分10
3分钟前
3分钟前
vvsloy发布了新的文献求助10
3分钟前
lutos发布了新的文献求助10
3分钟前
精明犀牛发布了新的文献求助10
3分钟前
3分钟前
3分钟前
Imran完成签到,获得积分10
4分钟前
4分钟前
CodeCraft应助真实的映寒采纳,获得10
4分钟前
在水一方应助谭代涛采纳,获得10
4分钟前
4分钟前
谭代涛发布了新的文献求助10
4分钟前
犬来八荒发布了新的文献求助30
5分钟前
小山己几完成签到,获得积分10
5分钟前
BowieHuang应助科研通管家采纳,获得10
5分钟前
BowieHuang应助科研通管家采纳,获得10
5分钟前
BowieHuang应助科研通管家采纳,获得10
5分钟前
桦奕兮完成签到 ,获得积分10
5分钟前
求求您啦完成签到,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599825
求助须知:如何正确求助?哪些是违规求助? 4685564
关于积分的说明 14838662
捐赠科研通 4671771
什么是DOI,文献DOI怎么找? 2538317
邀请新用户注册赠送积分活动 1505554
关于科研通互助平台的介绍 1470946