A New Lithium Iron Pyrophosphate Material with Abnormally High Voltage Approaching to 3.8 V

阴极 结构精修 焦磷酸盐 锂(药物) 材料科学 粉末衍射 化学计量学 分析化学(期刊) 化学 结晶学 晶体结构 物理化学 内分泌学 医学 生物化学 色谱法
作者
Tomochika Kurita,Junichi Iwata,Tamotsu Yamamoto,Shintaro Sato
出处
期刊:Meeting abstracts 卷期号:MA2017-01 (5): 413-413
标识
DOI:10.1149/ma2017-01/5/413
摘要

Introduction In recent years, it’s not too much to say that lithium-ion batteries (LIBs) are key components in electronic devices, which are often required to be mobile, or to be operated independently from system power supplies, such as smartphones, sensors, and electronic vehicles. Here, we propose a new Fe-based pyrophosphate cathode material Li 5.33 Fe 5.33 (P 2 O 7 ) 4 for LIBs. It has been found that the new Fe-based cathode has a potential for Fe 2+/3+ redox couple approaching to 3.8 V, which is the highest among those of all Fe-based phosphate materials and pyrophosphate materials reported so far [1] , including LiFePO 4 , Li 3 Fe 2 (PO 4 ) 3 , LiFeP 2 O 7 , Li 2 FeP 2 O 7 and LiFe 1.5 P 2 O 7 . In this report, we will discuss on its structural characterization and charge and discharge behaviors. Methods The cathode material was synthesized via the solid-state method. Stoichiometric amounts of precursors, Li 2 CO 3 , FeC 2 O 4 and (NH 4 ) 2 HPO 4 , were wet-blended in acetone. After evaporation of the solvent, the resulting mixture was sintered at 500-650°C for 12 hours in Ar atmosphere to obtain the cathode material. Synchrotron X-ray powder diffraction patterns of the cathode material were obtained using a wavelength of 0.9996 Å. Rietveld refinement was carried out with RIETAN-FP program [2] . Half-cell assembling was conducted in a dry room (dew point: <-70°C). The mixture of the cathode materials, Ketjen Black and polyvinylidene difluoride in a ratio of 85:10:5 wt% was dispersed in N-methylpyrrolidone. The resulting paste was coated on Al sheet, and then dried in vacuum at 40°C to evaporate the solvent. The Al sheet was cut out in disks (φ =16 mm), pressed under 9.5 MPa, and then dried in vacuum at 120°C overnight. 2032-type cells were assembled using the cathode sheets mentioned above as a positive electrode, Li metal disks (φ =16 mm) as a negative electrode, 1M LiPF 6 solution in a 3:7 v/v mixture of ethylene carbonate/dimethyl carbonate as the electrolyte, and polypropylene separator (φ =18 mm). Galvanostatic charge and discharge measurements were carried out in CC mode (6.95 mA per 1 g of the cathode material). The voltage range was set to 2.0-4.5 V. Results & Discussions Figure 1a shows a synchrotron X-ray diffraction pattern of the cathode material, Li 5.33 Fe 5.33 (P 2 O 7 ) 4 . The rietveld analysis revealed that the cathode material belongs to triclinic system P -1, and that the lattice parameters were calculated as the following: a = 6.3813 Å, b = 8.5635 Å, c = 10.0275 Å, α = 107.937°, β = 89.863°, γ = 93.0035°. In the crystal structure, FeO 6 octahedrons form edge-sharing zigzag chains along the b axis, as displayed in Figure 1b. Figure 2a and 2b show the first charge and discharge curves of a Li 5.33 Fe 5.33 (P 2 O 7 ) 4 /Li half cell and their derivative d Q /d V curves, respectively. Note that there is a plateau at 3.7-3.9 V in each of charge and discharge curves, near the charged state. In the derivative d Q /d V curves, there are four voltage peaks on charging, and three voltage peaks on discharging as displayed in Figure 2b. It is reasonable to say that the discharge voltage peak at 3.77 V corresponds to the charge voltage peak at 3.83 V, and, namely, that the observed Fe 2+/3+ redox potential near the charged state is 3.80 V. This is the highest voltage among the cathode materials composed of Li-Fe-P-O reported so far. Both of the first charge and discharge capacities were approximately 105 mAh/g, which is 76% of the theoretical capacity (139 mAh/g). The high potential of 3.80 V is probably related to the crystal structure with the FeO 6 edge-sharing chains (Figure 1b), in which the distance between neighboring Fe atoms is relatively small (3.22 Å at the smallest). This feature makes large Fe-Fe repulsion energy in the charged state with Fe 3+ , resulting in large difference in free energy between the charged and the initial states, which determines the redox potential. References [1] Masquelier, C.; Croguennec, L. Chemical Reviews 2013, 113 (8), 6552-6591. [2] Izumi, F.; Momma, K. Solid State Phenomena 2007 , 130 , 15-20. Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助智海瑞采纳,获得10
刚刚
1秒前
英勇含烟完成签到,获得积分10
1秒前
1秒前
roywin完成签到,获得积分10
2秒前
2秒前
Cbbaby完成签到,获得积分10
2秒前
胡健完成签到,获得积分20
3秒前
咕噜噜咕噜完成签到,获得积分10
4秒前
semigreen完成签到 ,获得积分10
4秒前
乐乐应助橘子采纳,获得10
4秒前
胡健发布了新的文献求助10
6秒前
6秒前
微笑向卉发布了新的文献求助10
6秒前
WangXinkui完成签到,获得积分10
6秒前
JoJo完成签到,获得积分10
6秒前
zzyh完成签到,获得积分10
7秒前
7秒前
科研通AI6应助是鸢采纳,获得10
7秒前
浮游应助陨落的繁星采纳,获得10
8秒前
8秒前
颜凡桃完成签到,获得积分10
8秒前
程程完成签到,获得积分10
10秒前
研ZZ完成签到,获得积分10
11秒前
11秒前
慢慢完成签到,获得积分10
11秒前
Ll完成签到 ,获得积分10
12秒前
开朗的觅柔完成签到,获得积分10
12秒前
杂化轨道退役研究员完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
共享精神应助小虾米采纳,获得10
14秒前
程住气完成签到 ,获得积分10
14秒前
灯灯完成签到,获得积分10
14秒前
LJ程励完成签到 ,获得积分10
14秒前
...完成签到,获得积分10
15秒前
科研狗完成签到 ,获得积分10
15秒前
海心完成签到,获得积分10
15秒前
16秒前
Lucas选李华完成签到 ,获得积分10
16秒前
小太阳完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
Psychology for Teachers 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4597902
求助须知:如何正确求助?哪些是违规求助? 4009316
关于积分的说明 12410427
捐赠科研通 3688598
什么是DOI,文献DOI怎么找? 2033325
邀请新用户注册赠送积分活动 1066591
科研通“疑难数据库(出版商)”最低求助积分说明 951742