超晶格
化学计量学
磁矩
材料科学
磁铁矿
基质(水族馆)
薄膜
结晶学
凝聚态物理
物理
纳米技术
物理化学
化学
地质学
冶金
海洋学
作者
Ozhet Mauit,K. Fleischer,Cormac Ó Coileáin,Brendan Bulfin,Daniel Fox,Christopher M. Smith,Daragh Mullarkey,Gulnar Sugurbekova,Hongzhou Zhang,I. V. Shvets
出处
期刊:Physical review
[American Physical Society]
日期:2017-03-23
卷期号:95 (12)
被引量:8
标识
DOI:10.1103/physrevb.95.125128
摘要
The electrical, crystallographic, and magnetic properties of ultrathin magnetite (${\mathrm{Fe}}_{3}{\mathrm{O}}_{4}$) have been studied in detail, by employing superlattice structures of ${\mathrm{Fe}}_{3}{\mathrm{O}}_{4}$/${\mathrm{MgFe}}_{2}{\mathrm{O}}_{4}$ and ${\mathrm{Fe}}_{3}{\mathrm{O}}_{4}$/MgO on a variety of substrates. By careful analysis of their properties, the influence of substrate stoichiometry, ${\mathrm{Fe}}_{3}{\mathrm{O}}_{4}$ thin film thickness, antiphase boundaries on the magnetic properties can be separated. In particular, the controversial enhanced magnetic moment in ultrathin films (5 nm) was confirmed to be related to the substrate stoichiometry, specifically the migration of oxygen vacancies into the ${\mathrm{Fe}}_{3}{\mathrm{O}}_{4}$ thin films. The multilayer concept can be employed with many other such systems and offers methods of tuning the properties of thin magnetic oxides.
科研通智能强力驱动
Strongly Powered by AbleSci AI