离子
分析化学(期刊)
电解质
电池(电)
无机化学
锂(药物)
锂离子电池
锰
作者
Anirudha Jena,Cho Hsueh Lee,Wei Kong Pang,Vanessa K. Peterson,Neeraj Sharma,Chun-Chieh Wang,Yen Fang Song,Chun Che Lin,Ho Chang,Ru-Shi Liu
标识
DOI:10.1016/j.electacta.2017.03.163
摘要
Abstract Li-rich metal oxides, regarded as a high-voltage composite cathode, is currently one of the hottest positive electrode material for lithium-ion batteries, due to its high-capacity and high-energy performance. The crystallography, phase composition and morphology can be altered by synthesis parameters, which can influence drastically the capacity and cycling performance. In this work, we demonstrate Li 1.207 Ni 0.127 Mn 0.54 Co 0.127 O 2 , obtained by a co-precipitation method, exhibits super-high specific capacity up to 298 mAh g −1 and excellent capacity retention of ∼100% up to 50 cycles. Using neutron powder diffraction and transmission X-ray microscopy, we have found that the cooling-treatments applied after sintering during synthesis are crucially important in controlling the phase composition and morphology of the cathodes, thereby influencing the electrochemical performance. Unique spherical microstructure, larger lattice, and higher content of Li-rich monoclinic component can be achieved in the rapid quenching process, whereas severe particle cracking along with the smaller lattice and lower monoclinic component content is obtained when natural cooling of the furnace is applied. Combined with electrochemical impedance spectra, a plausible mechanism is described for the poorer specific capacity and cycling stability of the composite cathodes.
科研通智能强力驱动
Strongly Powered by AbleSci AI