ceRNAs in plants: computational approaches and associated challenges for target mimic research

计算生物学 小RNA 鉴定(生物学) 计算模型 计算机科学 功能(生物学) 竞争性内源性RNA 基因组 生物 核糖核酸 生物信息学 人工智能 遗传学 基因 长非编码RNA 植物
作者
Alexandre Rossi Paschoal,Irma Lozada-Chávez,Douglas Silva Domingues,Peter F. Stadler
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
被引量:25
标识
DOI:10.1093/bib/bbx058
摘要

The competing endogenous RNA hypothesis has gained increasing attention as a potential global regulatory mechanism of microRNAs (miRNAs), and as a powerful tool to predict the function of many noncoding RNAs, including miRNAs themselves. Most studies have been focused on animals, although target mimic (TMs) discovery as well as important computational and experimental advances has been developed in plants over the past decade. Thus, our contribution summarizes recent progresses in computational approaches for research of miRNA:TM interactions. We divided this article in three main contributions. First, a general overview of research on TMs in plants is presented with practical descriptions of the available literature, tools, data, databases and computational reports. Second, we describe a common protocol for the computational and experimental analyses of TM. Third, we provide a bioinformatics approach for the prediction of TM motifs potentially cross-targeting both members within the same or from different miRNA families, based on the identification of consensus miRNA-binding sites from known TMs across sequenced genomes, transcriptomes and known miRNAs. This computational approach is promising because, in contrast to animals, miRNA families in plants are large with identical or similar members, several of which are also highly conserved. From the three consensus TM motifs found with our approach: MIM166, MIM171 and MIM159/319, the last one has found strong support on the recent experimental work by Reichel and Millar [Specificity of plant microRNA TMs: cross-targeting of mir159 and mir319. J Plant Physiol 2015;180:45-8]. Finally, we stress the discussion on the major computational and associated experimental challenges that have to be faced in future ceRNA studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助绿洲采纳,获得10
刚刚
Iris发布了新的文献求助10
1秒前
1秒前
英俊的铭应助胡强采纳,获得10
2秒前
NexusExplorer应助adazbd采纳,获得10
2秒前
3秒前
ding应助忆楠采纳,获得10
4秒前
5秒前
摇阿瑶完成签到,获得积分10
5秒前
5秒前
woiscdc完成签到,获得积分10
5秒前
Wei发布了新的文献求助10
5秒前
独特的绯发布了新的文献求助10
6秒前
8秒前
wanggongxiu完成签到,获得积分10
8秒前
8秒前
annie2D完成签到,获得积分10
9秒前
怎么说应助科研通管家采纳,获得10
9秒前
摇阿瑶发布了新的文献求助10
10秒前
忧伤的靖柔完成签到,获得积分10
10秒前
且泛轻舟发布了新的文献求助10
11秒前
即将拥有CNS完成签到,获得积分10
11秒前
日升月完成签到,获得积分10
11秒前
汉堡包应助Vicky采纳,获得10
11秒前
12秒前
12秒前
Wei完成签到,获得积分10
14秒前
15秒前
绿洲发布了新的文献求助10
15秒前
NexusExplorer应助沙鸥采纳,获得10
16秒前
wsh完成签到,获得积分10
16秒前
苇一发布了新的文献求助10
16秒前
18秒前
GYPP发布了新的文献求助10
19秒前
思源应助胖达采纳,获得10
21秒前
Iris完成签到,获得积分10
22秒前
深情安青应助叶子豪采纳,获得10
22秒前
G1997完成签到 ,获得积分10
23秒前
24秒前
24秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Product Class 33: N-Arylhydroxylamines 300
Machine Learning in Chemistry 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3387570
求助须知:如何正确求助?哪些是违规求助? 3000244
关于积分的说明 8790173
捐赠科研通 2686176
什么是DOI,文献DOI怎么找? 1471493
科研通“疑难数据库(出版商)”最低求助积分说明 680352
邀请新用户注册赠送积分活动 673072