鉴别器
计算机科学
人工智能
发电机(电路理论)
交叉熵
二进制数
生成语法
对抗制
生成对抗网络
源代码
编码(集合论)
卷积神经网络
基本事实
模式识别(心理学)
二元分类
显著性图
熵(时间箭头)
任务(项目管理)
深度学习
图像(数学)
数学
支持向量机
物理
经济
功率(物理)
集合(抽象数据类型)
管理
程序设计语言
操作系统
探测器
算术
电信
量子力学
作者
Jwo Pan,Cristian Canton-Ferrer,Kevin McGuinness,Noel E. O’Connor,Jordi Torres,Elisa Sayrol,Xavier Giró-i-Nieto
出处
期刊:Cornell University - arXiv
日期:2017-01-04
被引量:82
标识
DOI:10.48550/arxiv.1701.01081
摘要
We introduce SalGAN, a deep convolutional neural network for visual saliency prediction trained with adversarial examples. The first stage of the network consists of a generator model whose weights are learned by back-propagation computed from a binary cross entropy (BCE) loss over downsampled versions of the saliency maps. The resulting prediction is processed by a discriminator network trained to solve a binary classification task between the saliency maps generated by the generative stage and the ground truth ones. Our experiments show how adversarial training allows reaching state-of-the-art performance across different metrics when combined with a widely-used loss function like BCE. Our results can be reproduced with the source code and trained models available at https://imatge-upc.github.io/saliency-salgan-2017/.
科研通智能强力驱动
Strongly Powered by AbleSci AI