Near-infrared reflectance spectroscopy for the prediction of chemical composition in walnut kernel

近红外反射光谱 校准 标准误差 标准差 决定系数 水分 相关系数 漫反射红外傅里叶变换 均方误差 光谱学 近红外光谱 分析化学(期刊) 化学 遥感 数学 环境科学 光学 统计 色谱法 物理 有机化学 生物化学 地质学 催化作用 光催化 量子力学
作者
Jianhua Yi,Yifei Sun,Zhu Zhen-bao,Ning Liu,Jiali Lu
出处
期刊:International Journal of Food Properties [Informa]
卷期号:20 (7): 1633-1642 被引量:37
标识
DOI:10.1080/10942912.2016.1217006
摘要

In the present work, 116 samples were collected and near-infrared reflectance spectroscopy prediction model for determination of moisture, protein, and fat contents of walnut meal were obtained and evaluated. All the samples were analyzed based on the chemical methods. Meanwhile, they were scanned to obtain their near-infrared reflectance spectrum in the wavelength range of 570–1840 nm. Several preprocess treatments including scattering pretreatments, mathematical pretreatments, and aggression methods were optimized to increase the accuracy of the calibration models according to the coefficient of determination for calibration (Rc2) and the cross-validation (one minus the variance ratio, 1-VR), and the standard error of calibration and cross-validation. The results showed modified partial least square loading was the better aggression method to predict the moisture, proteins, and fats in walnut kernel. The calibration equations obtained indicated that near-infrared reflectance spectroscopy had excellent predictive capacity for the three components with Rc2 = 0.965, standard error of calibration = 0.052 for moisture, and Rc2 = 0.967, standard error of calibration = 0.191 for proteins, and Rc2 = 0.979, standard error of calibration = 0.171 for fats, respectively. The external validation further confirmed the robustness and reliability of the near-infrared reflectance spectroscopy prediction models with the correlation coefficient of actual and predicted values (R2) = 0.952, ratio of performance deviation = 4.14, the standard error of prediction =0.058 for moisture, and R2 = 0.977, ratio of performance deviation = 5.55, standard error of prediction = 0.182 for proteins, and R2 = 0.990, ratio of performance deviation = 8.64, standard error of prediction = 0.191 for fats, respectively. Near-infrared reflectance spectroscopy is a reliable technology to predict these constituents in walnuts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yiyi发布了新的文献求助10
1秒前
欣喜觅山完成签到 ,获得积分10
1秒前
1秒前
冷傲达完成签到,获得积分10
2秒前
皮卡关注了科研通微信公众号
2秒前
2秒前
bkagyin应助yy采纳,获得10
2秒前
2秒前
狼主发布了新的文献求助10
3秒前
4秒前
酷波er应助热心的乌冬面采纳,获得10
4秒前
4秒前
所所应助端庄采梦采纳,获得10
5秒前
5秒前
大号发布了新的文献求助10
5秒前
dling02完成签到 ,获得积分10
5秒前
charm12发布了新的文献求助10
5秒前
mikeleung发布了新的文献求助10
6秒前
等待小笼包完成签到,获得积分10
6秒前
英姑应助Emma采纳,获得10
6秒前
6秒前
深情安青应助颖宝老公采纳,获得10
6秒前
鲤鱼小鸽子完成签到 ,获得积分20
7秒前
7秒前
枫叶完成签到,获得积分10
7秒前
YN完成签到,获得积分10
7秒前
mikann发布了新的文献求助10
7秒前
jasmine完成签到,获得积分10
8秒前
自然的小熊猫完成签到 ,获得积分10
8秒前
陶醉如柏完成签到,获得积分10
8秒前
轻松的冥王星完成签到,获得积分10
9秒前
Zerone01001发布了新的文献求助10
9秒前
F1发布了新的文献求助10
9秒前
9秒前
qqxx完成签到,获得积分10
10秒前
CipherSage应助独特绣连采纳,获得20
10秒前
英俊的铭应助caspianhuang采纳,获得10
10秒前
10秒前
无敌鱼发布了新的文献求助10
11秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3311845
求助须知:如何正确求助?哪些是违规求助? 2944668
关于积分的说明 8520492
捐赠科研通 2620270
什么是DOI,文献DOI怎么找? 1432725
科研通“疑难数据库(出版商)”最低求助积分说明 664756
邀请新用户注册赠送积分活动 650053