Near-infrared reflectance spectroscopy for the prediction of chemical composition in walnut kernel

近红外反射光谱 校准 标准误差 标准差 决定系数 水分 相关系数 漫反射红外傅里叶变换 均方误差 光谱学 近红外光谱 分析化学(期刊) 化学 遥感 数学 环境科学 光学 统计 色谱法 物理 有机化学 生物化学 地质学 催化作用 光催化 量子力学
作者
Jianhua Yi,Yifei Sun,Zhu Zhen-bao,Ning Liu,Jiali Lu
出处
期刊:International Journal of Food Properties [Informa]
卷期号:20 (7): 1633-1642 被引量:37
标识
DOI:10.1080/10942912.2016.1217006
摘要

In the present work, 116 samples were collected and near-infrared reflectance spectroscopy prediction model for determination of moisture, protein, and fat contents of walnut meal were obtained and evaluated. All the samples were analyzed based on the chemical methods. Meanwhile, they were scanned to obtain their near-infrared reflectance spectrum in the wavelength range of 570–1840 nm. Several preprocess treatments including scattering pretreatments, mathematical pretreatments, and aggression methods were optimized to increase the accuracy of the calibration models according to the coefficient of determination for calibration (Rc2) and the cross-validation (one minus the variance ratio, 1-VR), and the standard error of calibration and cross-validation. The results showed modified partial least square loading was the better aggression method to predict the moisture, proteins, and fats in walnut kernel. The calibration equations obtained indicated that near-infrared reflectance spectroscopy had excellent predictive capacity for the three components with Rc2 = 0.965, standard error of calibration = 0.052 for moisture, and Rc2 = 0.967, standard error of calibration = 0.191 for proteins, and Rc2 = 0.979, standard error of calibration = 0.171 for fats, respectively. The external validation further confirmed the robustness and reliability of the near-infrared reflectance spectroscopy prediction models with the correlation coefficient of actual and predicted values (R2) = 0.952, ratio of performance deviation = 4.14, the standard error of prediction =0.058 for moisture, and R2 = 0.977, ratio of performance deviation = 5.55, standard error of prediction = 0.182 for proteins, and R2 = 0.990, ratio of performance deviation = 8.64, standard error of prediction = 0.191 for fats, respectively. Near-infrared reflectance spectroscopy is a reliable technology to predict these constituents in walnuts.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Akim应助羊羊羊采纳,获得10
1秒前
1秒前
小月亮发布了新的文献求助200
1秒前
2秒前
2秒前
3秒前
4秒前
随意发布了新的文献求助10
4秒前
鲤鱼笑容完成签到,获得积分10
4秒前
PG发布了新的文献求助10
5秒前
Jiali完成签到,获得积分10
5秒前
华仔应助猫小咪采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
yh发布了新的文献求助10
5秒前
5秒前
共渡完成签到,获得积分10
6秒前
今后应助合适觅荷采纳,获得10
6秒前
6秒前
李迅迅发布了新的文献求助10
7秒前
朱桂林完成签到,获得积分10
7秒前
Lyue发布了新的文献求助10
7秒前
orixero应助机智的然然采纳,获得10
8秒前
9秒前
9秒前
舒服的莞发布了新的文献求助10
9秒前
Hola完成签到,获得积分10
10秒前
邵大鹅鹅鹅完成签到 ,获得积分10
10秒前
hlt发布了新的文献求助10
10秒前
素笺发布了新的文献求助10
10秒前
Lucas应助研友_ZAyqJZ采纳,获得10
11秒前
阿吉发布了新的文献求助10
11秒前
orixero应助Dawn_ZZZ采纳,获得10
11秒前
waynechang完成签到,获得积分10
11秒前
Felix_glyn发布了新的文献求助10
12秒前
12秒前
CipherSage应助小恐龙采纳,获得10
13秒前
方hh完成签到,获得积分10
14秒前
卡皮巴拉完成签到,获得积分10
14秒前
CipherSage应助CYJ采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5774528
求助须知:如何正确求助?哪些是违规求助? 5618245
关于积分的说明 15436081
捐赠科研通 4907003
什么是DOI,文献DOI怎么找? 2640503
邀请新用户注册赠送积分活动 1588336
关于科研通互助平台的介绍 1543291