FusionJISI: A fusion algorithm based on infrared and visible images with joint involvement of source image

图像融合 计算机科学 人工智能 融合 红外线的 特征(语言学) 过程(计算) 计算机视觉 模式识别(心理学) 图像(数学) 接头(建筑物) 光学 物理 建筑工程 哲学 语言学 工程类 操作系统
作者
Linlu Dong,Jun Wang,Liangjun Zhao
出处
期刊:Infrared Physics & Technology [Elsevier]
卷期号:132: 104704-104704 被引量:1
标识
DOI:10.1016/j.infrared.2023.104704
摘要

The available image fusion framework pays little attention to the importance of the joint involvement of source images in the whole fusion process. Due to its significance, an approach called FusionJISI combining infrared and visible image fusion algorithms with the joint involvement of source images was proposed. Fully decomposed texture features of each source image are realized to reshape the feature extraction process of source images by pre-fusing infrared and visible images, and applying the features of pre-fused images in the spatial domain. At the same time, to overcome the imaging differences caused by different wavelengths of infrared and visible light, a method to extract targeted infrared image saliency is designed to compensate for the differences between source images. Then, infrared and visible images are used as reference objects in the fusion process, and the extracted feature and base maps are constructed to be utilized in a feature similarity function that obtains the optimal solution of the function, which then makes the fusion process turn to an optimization problem and avoids the difficulty of manually designing complex fusion strategies. Apart from the available technology, the proposed method allows the source image to take a part in the whole fusion process. Experiments on the public dataset show that the fusion strategy can balance the texture gradient of infrared and visible images in the fusion results.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
传奇3应助李树玉采纳,获得10
1秒前
2秒前
汉堡包应助林菲菲采纳,获得10
2秒前
杨德帅发布了新的文献求助10
2秒前
Jasper应助施戎采纳,获得10
3秒前
领导范儿应助cake777采纳,获得10
4秒前
57r7uf完成签到,获得积分10
4秒前
4秒前
浮云发布了新的文献求助20
4秒前
asdfqwer发布了新的文献求助10
4秒前
小醒笑哈哈完成签到 ,获得积分10
6秒前
南北完成签到,获得积分10
7秒前
wjclear完成签到,获得积分10
7秒前
顾矜应助你好采纳,获得10
7秒前
Seven完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
小辉发布了新的文献求助10
9秒前
9秒前
Singularity应助YL采纳,获得10
9秒前
hoangphong完成签到,获得积分10
10秒前
zhanglj发布了新的文献求助10
10秒前
10秒前
10秒前
晴天完成签到,获得积分10
11秒前
11秒前
李爱国应助halona采纳,获得10
11秒前
GeminiWU完成签到,获得积分10
12秒前
dududu发布了新的文献求助10
13秒前
CZmike发布了新的文献求助10
13秒前
14秒前
汉堡包应助ainiowo采纳,获得10
14秒前
14秒前
小夏完成签到,获得积分10
14秒前
wondor1111完成签到,获得积分10
15秒前
实现所有完成签到 ,获得积分10
16秒前
香蕉觅云应助落寞幻翠采纳,获得10
16秒前
nature24发布了新的文献求助10
16秒前
桐桐应助dian采纳,获得10
16秒前
愉快的莹发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718762
求助须知:如何正确求助?哪些是违规求助? 5254117
关于积分的说明 15287024
捐赠科研通 4868786
什么是DOI,文献DOI怎么找? 2614471
邀请新用户注册赠送积分活动 1564338
关于科研通互助平台的介绍 1521791