Molecular Generation with Reduced Labeling through Constraint Architecture

计算机科学 生成模型 约束(计算机辅助设计) 生成语法 变压器 人工智能 片段(逻辑) 药物发现 强化学习 机器学习 化学 算法 数学 物理 生物化学 几何学 量子力学 电压
作者
Jike Wang,Yundian Zeng,Huiyong Sun,Junmei Wang,Xiaorui Wang,Ruofan Jin,Mingyang Wang,Xujun Zhang,Dongsheng Cao,Xi Chen,Chang‐Yu Hsieh,Tingjun Hou
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:63 (11): 3319-3327 被引量:3
标识
DOI:10.1021/acs.jcim.3c00579
摘要

In the past few years, a number of machine learning (ML)-based molecular generative models have been proposed for generating molecules with desirable properties, but they all require a large amount of label data of pharmacological and physicochemical properties. However, experimental determination of these labels, especially bioactivity labels, is very expensive. In this study, we analyze the dependence of various multi-property molecule generation models on biological activity label data and propose Frag-G/M, a fragment-based multi-constraint molecular generation framework based on conditional transformer, recurrent neural networks (RNNs), and reinforcement learning (RL). The experimental results illustrate that, using the same number of labels, Frag-G/M can generate more desired molecules than the baselines (several times more than the baselines). Moreover, compared with the known active compounds, the molecules generated by Frag-G/M exhibit higher scaffold diversity than those generated by the baselines, thus making it more promising to be used in real-world drug discovery scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
李繁蕊发布了新的文献求助10
1秒前
暴躁的嘉懿完成签到,获得积分10
1秒前
LZH发布了新的文献求助20
1秒前
领导范儿应助rosexu采纳,获得10
2秒前
华生完成签到,获得积分10
3秒前
3秒前
Miracle关注了科研通微信公众号
3秒前
通~发布了新的文献求助10
4秒前
4秒前
Apple完成签到,获得积分10
4秒前
sunzhiyu233发布了新的文献求助10
5秒前
医学僧发布了新的文献求助30
5秒前
Sheila完成签到 ,获得积分10
5秒前
sweetbearm应助科研通管家采纳,获得10
5秒前
Hello应助科研通管家采纳,获得10
5秒前
NN应助科研通管家采纳,获得10
5秒前
6秒前
英姑应助科研通管家采纳,获得10
6秒前
36456657应助科研通管家采纳,获得10
6秒前
打打应助科研通管家采纳,获得10
6秒前
prosperp应助科研通管家采纳,获得20
6秒前
打打应助科研通管家采纳,获得10
6秒前
大个应助科研通管家采纳,获得10
6秒前
Akim应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
爆米花应助科研通管家采纳,获得10
7秒前
7秒前
赘婿应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
执着夏岚完成签到 ,获得积分10
7秒前
CipherSage应助苏州小北采纳,获得10
7秒前
www完成签到,获得积分20
8秒前
汉关发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808