Integrated Analysis of Single-Cell RNA-Seq and Bulk RNA-Seq Combined with Multiple Machine Learning Identified a Novel Immune Signature in Diabetic Nephropathy

免疫系统 生物 基因 基因表达 计算生物学 细胞因子 RNA序列 基因表达谱 随机森林 癌症研究 免疫学 转录组 遗传学 人工智能 计算机科学
作者
Li Wang,Yan Zhang,Lin Pang,Ya-Fang Dong,Mei-Fei Li,Hui Liao,Rongshan Li
出处
期刊:Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy [Dove Medical Press]
卷期号:Volume 16: 1669-1684 被引量:2
标识
DOI:10.2147/dmso.s413569
摘要

Background: Increasing evidence suggests that immune modulation contributes to the pathogenesis and progression of diabetic nephropathy (DN). However, the role of immune modulation in DN has not been elucidated. The purpose of this study was to search for potential immune-related therapeutic targets and molecular mechanisms of DN. Methods: Gene expression datasets were obtained from the Gene Expression Omnibus (GEO) database. A total of 1793 immune-related genes were acquired from the Immunology Database and Analysis Portal (ImmPort). Weighted gene co-expression network analysis (WGCNA) was performed for GSE142025, and the red and turquoise co-expression modules were found to be key for DN progression. We utilized four machine learning algorithms, namely, random forest (RF), support vector machine (SVM), adaptive boosting (AdaBoost), and k-nearest neighbor (KNN), to evaluate the diagnostic value of hub genes. Immune infiltration patterns were analyzed using the CIBERSORT algorithm, and the correlation between immune cell type abundance and hub gene expression was also investigated. Results: A total of 77 immune-related genes of advanced DN were selected for subsequent analyzes. Functional enrichment analysis showed that the regulation of cytokine–cytokine receptor interactions and immune cell function play a corresponding role in the progression of DN. The final 10 hub genes were identified through multiple datasets. In addition, the expression levels of the identified hub genes were corroborated through a rat model. The RF model exhibited the highest AUC. CIBERSORT analysis and single-cell sequencing analysis revealed changes in immune infiltration patterns between control subjects and DN patients. Several potential drugs to reverse the altered hub genes were identified through the Drug-Gene Interaction database (DGIdb). Conclusion: This pioneering work provided a novel immunological perspective on the progression of DN, identifying key immune-related genes and potential drug targets, thus stimulating future mechanistic research and therapeutic target identification for DN. Keywords: diabetic nephropathy, machine learning, single cell, cell-to-cell communication, immune therapy

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助小小青椒采纳,获得10
1秒前
刘肖完成签到,获得积分10
3秒前
hhhhh完成签到 ,获得积分10
3秒前
悦耳草莓发布了新的文献求助30
3秒前
鳗鱼汽车完成签到 ,获得积分10
3秒前
田様应助猪米妮采纳,获得10
3秒前
FF完成签到,获得积分10
6秒前
6秒前
8秒前
8秒前
llopcop完成签到,获得积分10
8秒前
吱吱熊sama完成签到,获得积分10
8秒前
唱唱反调完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
mzn6664完成签到,获得积分10
9秒前
9秒前
风大鱼贵完成签到,获得积分10
10秒前
yang发布了新的文献求助10
10秒前
Oz完成签到,获得积分10
10秒前
Lucas应助以木采纳,获得10
12秒前
闾丘德地完成签到,获得积分10
12秒前
12秒前
12秒前
烟花应助tguczf采纳,获得10
12秒前
风大鱼贵发布了新的文献求助10
12秒前
feifanyang发布了新的文献求助10
12秒前
13秒前
loom完成签到 ,获得积分10
14秒前
情怀应助QGG采纳,获得10
14秒前
14秒前
超帅问儿完成签到,获得积分10
15秒前
15秒前
16秒前
LINHAI完成签到,获得积分10
16秒前
16秒前
CipherSage应助悦耳草莓采纳,获得10
17秒前
从容的连碧完成签到,获得积分20
17秒前
汉堡包应助妮妮采纳,获得10
18秒前
mmol发布了新的文献求助10
18秒前
异念卿完成签到 ,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601210
求助须知:如何正确求助?哪些是违规求助? 4686646
关于积分的说明 14845466
捐赠科研通 4679924
什么是DOI,文献DOI怎么找? 2539214
邀请新用户注册赠送积分活动 1506091
关于科研通互助平台的介绍 1471266