Understanding and Mitigating the Degradation of Perovskite Solar Cells Based on a Nickel Oxide Hole Transport Material during Damp Heat Testing

材料科学 钙钛矿(结构) 降级(电信) 氧化镍 光电子学 溅射 太阳能电池 纳米技术 化学工程 工程物理 薄膜 冶金 电子工程 工程类
作者
Marion Dussouillez,Soo‐Jin Moon,Mounir Mensi,Christian Wolff,Yongpeng Liu,Jun‐Ho Yum,Brett A. Kamino,Arnaud Walter,Florent Sahli,Ludovic Lauber,Gabriel Christmann,Kevin Sivula,Quentin Jeangros,Christophe Ballif,Sylvain Nicolay,Adriana Paracchino
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:15 (23): 27941-27951 被引量:6
标识
DOI:10.1021/acsami.3c02709
摘要

The development of stable materials, processable on a large area, is a prerequisite for perovskite industrialization. Beyond the perovskite absorber itself, this should also guide the development of all other layers in the solar cell. In this regard, the use of NiOx as a hole transport material (HTM) offers several advantages, as it can be deposited with high throughput on large areas and on flat or textured surfaces via sputtering, a well-established industrial method. However, NiOx may trigger the degradation of perovskite solar cells (PSCs) when exposed to environmental stressors. Already after 100 h of damp heat stressing, a strong fill factor (FF) loss appears in conjunction with a characteristic S-shaped J-V curve. By performing a wide range of analysis on cells and materials, completed by device simulation, the cause of the degradation is pinpointed and mitigation strategies are proposed. When NiOx is heated in an air-tight environment, its free charge carrier density drops, resulting in a band misalignment at the NiOx/perovskite interface and in the formation of a barrier impeding hole extraction. Adding an organic layer between the NiOx and the perovskite enables higher performances but not long-term thermal stability, for which reducing the NiOx thickness is necessary.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
大七发布了新的文献求助10
刚刚
勤奋白昼完成签到,获得积分10
刚刚
通~发布了新的文献求助10
1秒前
眼角流星完成签到,获得积分10
1秒前
bxj发布了新的文献求助10
1秒前
joker完成签到 ,获得积分10
2秒前
靓丽访枫发布了新的文献求助10
2秒前
乔乔发布了新的文献求助10
2秒前
科研通AI5应助深情凡灵采纳,获得10
4秒前
remedy完成签到,获得积分10
4秒前
4秒前
5秒前
6秒前
eric曾发布了新的文献求助10
6秒前
6秒前
嘻嘻嘻完成签到,获得积分10
7秒前
7秒前
carrier_hc完成签到,获得积分10
7秒前
冰安发布了新的文献求助10
8秒前
9秒前
10秒前
10秒前
10秒前
在水一方应助桑桑采纳,获得10
11秒前
11秒前
充电宝应助通~采纳,获得10
12秒前
liberation完成签到 ,获得积分10
12秒前
牛牛123完成签到 ,获得积分10
12秒前
13秒前
13秒前
罗实发布了新的文献求助10
14秒前
14秒前
大模型应助LL采纳,获得10
14秒前
33333发布了新的文献求助10
14秒前
自觉秋发布了新的文献求助10
15秒前
啱啱完成签到,获得积分10
15秒前
在水一方应助呆萌的秋天采纳,获得10
15秒前
暴打小猪仔完成签到,获得积分10
15秒前
王w完成签到 ,获得积分10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762