DNA protein binding recognition based on lifelong learning

人工智能 计算机科学 水准点(测量) 机器学习 领域(数学) 模式识别(心理学) 样品(材料) 灵敏度(控制系统) 深度学习 鉴定(生物学) 数据挖掘 数学 化学 植物 大地测量学 色谱法 电子工程 纯数学 工程类 生物 地理
作者
Yongsan Liu,Shixuan Guan,Tengsheng Jiang,Qiming Fu,Jieming Ma,Zhiming Cui,Yijie Ding,Hongjie Wu
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:164: 107094-107094 被引量:4
标识
DOI:10.1016/j.compbiomed.2023.107094
摘要

In recent years, research in the field of bioinformatics has focused on predicting the raw sequences of proteins, and some scholars consider DNA-binding protein prediction as a classification task. Many statistical and machine learning-based methods have been widely used in DNA-binding proteins research. The aforementioned methods are indeed more efficient than those based on manual classification, but there is still room for improvement in terms of prediction accuracy and speed. In this study, researchers used Average Blocks, Discrete Cosine Transform, Discrete Wavelet Transform, Global encoding, Normalized Moreau-Broto Autocorrelation and Pseudo position-specific scoring matrix to extract evolutionary features. A dynamic deep network based on lifelong learning architecture was then proposed in order to fuse six features and thus allow for more efficient classification of DNA-binding proteins. The multi-feature fusion allows for a more accurate description of the desired protein information than single features. This model offers a fresh perspective on the dichotomous classification problem in bioinformatics and broadens the application field of lifelong learning. The researchers ran trials on three datasets and contrasted them with other classification techniques to show the model's effectiveness in this study. The findings demonstrated that the model used in this research was superior to other approaches in terms of single-sample specificity (81.0%, 83.0%) and single-sample sensitivity (82.4%, 90.7%), and achieves high accuracy on the benchmark dataset (88.4%, 80.0%, and 76.6%).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
学术大白完成签到 ,获得积分10
刚刚
刚刚
SYT完成签到,获得积分10
1秒前
2秒前
4秒前
4秒前
4秒前
5秒前
5秒前
魏伯安发布了新的文献求助10
5秒前
5秒前
zhouleiwang完成签到,获得积分10
6秒前
李爱国应助aiming采纳,获得10
7秒前
无奈傲菡完成签到,获得积分10
8秒前
TT发布了新的文献求助10
8秒前
啦啦啦发布了新的文献求助10
9秒前
sun发布了新的文献求助10
10秒前
荣荣完成签到,获得积分10
10秒前
11秒前
小安完成签到,获得积分10
12秒前
Spencer完成签到 ,获得积分10
12秒前
PengHu完成签到,获得积分10
13秒前
13秒前
15秒前
17秒前
17秒前
17秒前
ywang发布了新的文献求助10
18秒前
失眠虔纹完成签到,获得积分10
18秒前
斯文败类应助nextconnie采纳,获得10
18秒前
药学牛马发布了新的文献求助10
22秒前
22秒前
23秒前
26秒前
张无缺完成签到,获得积分10
29秒前
31秒前
CodeCraft应助MES采纳,获得10
32秒前
笨笨乘风完成签到,获得积分10
33秒前
田様应助axunQAQ采纳,获得10
35秒前
完美秋烟发布了新的文献求助10
35秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849