Multi-task banded regression model: A novel individual survival analysis model for breast cancer

乳腺癌 比例危险模型 鞅(概率论) 回归 医学 回归分析 统计 计算机科学 肿瘤科 癌症 内科学 数学
作者
Rui Chen,Nian Cai,Zhonghong Luo,Huiheng Wang,Xuan Liu,Jian Li
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:162: 107080-107080 被引量:1
标识
DOI:10.1016/j.compbiomed.2023.107080
摘要

To reveal the hazard probability of individual breast cancer patients, a multi-task banded regression model is proposed for individual survival analysis of breast cancer.A banded verification matrix is designed to construct the response transform function of the proposed multi-task banded regression model, which can solve the repeated switching of survival rate. A martingale process is introduced to construct different nonlinear regressions for different survival subintervals. The concordance index (C-index) is used to compare the proposed model with Cox proportional hazards (CoxPH) models and previous multi-task regression models.Two commonly-used breast cancer datasets are employed to validate the proposed model. Specifically, the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) includes 1981 breast cancer patients, of which 57.7% died of breast cancer. The Rotterdam & German Breast Cancer Study Group (GBSG) includes 1546 patients with lymph node-positive breast cancer in a randomized clinical trial, of which 44.4% died. Experimental results indicate that the proposed model is superior to some existing models for overall and individual survival analysis of breast cancer, with the C-index of 0.6786 for the GBSG and 0.6701 for the METABRIC.The superiority of the proposed model can be contributed to three novel ideas. One is that a banded verification matrix can band the response of the survival process. Second, the martingale process can construct different nonlinear regressions for different survival subintervals. Third, the novel loss can adapt the model to making the multi-task regression similar to the real survival process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苏卿应助kento采纳,获得100
刚刚
小马甲应助满意之玉采纳,获得10
刚刚
1秒前
Jing完成签到,获得积分10
2秒前
饕餮发布了新的文献求助10
2秒前
3秒前
3秒前
wqy完成签到,获得积分10
3秒前
犹豫的戎完成签到,获得积分20
3秒前
狗子完成签到 ,获得积分10
4秒前
CodeCraft应助小小飞采纳,获得10
4秒前
JamesPei应助JUSTs0so采纳,获得10
6秒前
Beth完成签到,获得积分10
6秒前
粥粥发布了新的文献求助10
7秒前
7秒前
庞威完成签到 ,获得积分10
7秒前
8秒前
吕春雨完成签到,获得积分10
8秒前
Grayball应助ccc采纳,获得10
8秒前
9秒前
9秒前
勖勖完成签到,获得积分10
9秒前
邵裘发布了新的文献求助10
9秒前
9秒前
饕餮完成签到,获得积分10
10秒前
11秒前
wangg发布了新的文献求助10
11秒前
大个应助勤恳的依丝采纳,获得10
12秒前
星星发布了新的文献求助10
12秒前
spray发布了新的文献求助30
12秒前
LZJ完成签到,获得积分10
12秒前
13秒前
YE发布了新的文献求助30
13秒前
MHB应助叫滚滚采纳,获得10
14秒前
wzxxxx发布了新的文献求助10
14秒前
斯文败类应助勤劳傲晴采纳,获得10
15秒前
shilong.yang发布了新的文献求助10
15秒前
momo完成签到,获得积分10
16秒前
wxp_bioinfo完成签到,获得积分10
17秒前
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808