Multi-task banded regression model: A novel individual survival analysis model for breast cancer

乳腺癌 比例危险模型 鞅(概率论) 回归 医学 回归分析 统计 计算机科学 肿瘤科 癌症 内科学 数学
作者
Rui Chen,Nian Cai,Zhonghong Luo,Huiheng Wang,Xuan Liu,Jian Li
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:162: 107080-107080 被引量:1
标识
DOI:10.1016/j.compbiomed.2023.107080
摘要

To reveal the hazard probability of individual breast cancer patients, a multi-task banded regression model is proposed for individual survival analysis of breast cancer.A banded verification matrix is designed to construct the response transform function of the proposed multi-task banded regression model, which can solve the repeated switching of survival rate. A martingale process is introduced to construct different nonlinear regressions for different survival subintervals. The concordance index (C-index) is used to compare the proposed model with Cox proportional hazards (CoxPH) models and previous multi-task regression models.Two commonly-used breast cancer datasets are employed to validate the proposed model. Specifically, the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) includes 1981 breast cancer patients, of which 57.7% died of breast cancer. The Rotterdam & German Breast Cancer Study Group (GBSG) includes 1546 patients with lymph node-positive breast cancer in a randomized clinical trial, of which 44.4% died. Experimental results indicate that the proposed model is superior to some existing models for overall and individual survival analysis of breast cancer, with the C-index of 0.6786 for the GBSG and 0.6701 for the METABRIC.The superiority of the proposed model can be contributed to three novel ideas. One is that a banded verification matrix can band the response of the survival process. Second, the martingale process can construct different nonlinear regressions for different survival subintervals. Third, the novel loss can adapt the model to making the multi-task regression similar to the real survival process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助boyue采纳,获得10
刚刚
Orange应助Sylvia采纳,获得20
4秒前
8秒前
boyue完成签到,获得积分10
9秒前
把的蛮耐得烦完成签到,获得积分10
11秒前
神光发布了新的文献求助10
14秒前
我是老大应助陈住气采纳,获得10
14秒前
震动的沉鱼完成签到 ,获得积分10
15秒前
llllllll完成签到,获得积分10
15秒前
虾米YYY完成签到,获得积分10
16秒前
zky17715002完成签到,获得积分10
18秒前
ding应助曾经富采纳,获得10
18秒前
18秒前
21秒前
21秒前
耕云钓月完成签到,获得积分10
26秒前
Zhang完成签到,获得积分10
26秒前
研友_Zbb4mZ完成签到,获得积分10
27秒前
27秒前
PrayOne完成签到 ,获得积分10
28秒前
研究牲完成签到,获得积分10
28秒前
29秒前
yufanhui应助Jasin采纳,获得10
29秒前
30秒前
犹豫的踏歌完成签到,获得积分10
30秒前
31秒前
32秒前
34秒前
常常发布了新的文献求助10
34秒前
Sakura发布了新的文献求助10
36秒前
37秒前
苗条伟帮完成签到 ,获得积分10
38秒前
krisliu完成签到 ,获得积分10
38秒前
好大雷完成签到,获得积分10
39秒前
40秒前
冰叶点点完成签到 ,获得积分20
42秒前
可爱的函函应助Sakura采纳,获得10
43秒前
曾经富发布了新的文献求助10
43秒前
NexusExplorer应助科研通管家采纳,获得10
44秒前
搜集达人应助科研通管家采纳,获得10
44秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159827
求助须知:如何正确求助?哪些是违规求助? 2810718
关于积分的说明 7889262
捐赠科研通 2469826
什么是DOI,文献DOI怎么找? 1315126
科研通“疑难数据库(出版商)”最低求助积分说明 630742
版权声明 602012