电催化剂
材料科学
催化作用
选择性
纳米结构
纳米颗粒
化学工程
纳米技术
模板
纳米线
粒子(生态学)
电解质
蒸发
碳纤维
粒径
模板方法模式
电化学
电极
化学
复合材料
有机化学
工程类
物理化学
地质学
物理
海洋学
复合数
热力学
作者
Junbeom Cho,Ji‐Yoon Song,Minki Kim,Yesol Kim,Issam Gereige,Chansol Kim,Hee‐Tae Jung
标识
DOI:10.1021/acsanm.3c01244
摘要
Highly selective electrocatalytic CO2 reduction for CO production has attracted tremendous attention for achieving the forthcoming goals of carbon neutrality and widespread industrial utilization and recycling of carbon. Among various approaches, the structural control of the catalyst is particularly interesting because of the facile control of CO2 reduction conditions, such as reaction media and reaction pathways. Thus far, a wide range of nanostructured catalysts, including Au needle tips, Au nanowires, and Au wrinkles, have been used for the enhancement of the selectivity of CO production. In this study, an electrocatalyst with a hierarchical nanostructure for the highly selective production of CO is reported. This hierarchical structure is fabricated by the deposition of Au via e-beam evaporation on a dendritic fibrous nanosilica (KCC-1) template, which is a spherical silica particle consisting of uniformly distributed center-radial fibers. The conversion efficiency of this catalyst is strongly affected by the thickness of the Au deposited on the KCC-1 template, and the highest CO selectivity of ∼98% (at −0.5 V vs. RHE) is obtained at an optimum Au thickness of 50 nm. According to the CO2 electrocatalytic reduction results obtained from KCC-1 with dendritic fibers and a conventional spherical particle without the fibers under various electrolyte conditions, such selectivity enhancement of Au on the KCC-1 template is attributed to the increase in the local pH near the hierarchical catalyst surface. This work provides potential promising templates that exhibit a unique nanostructure for efficient electrocatalysis.
科研通智能强力驱动
Strongly Powered by AbleSci AI